The reciprocal problem to problem I will now be formulated.
II: Minimize the expression

$$Q(\mathbf{q}, \mathbf{q}) - 2Q(\mathbf{q}, \mathbf{p}_0)$$

admitting for competition all vectors \mathbf{q} for which $\mathbf{q}-\mathbf{q}_0$ is in Σ . If the minimum is attained for $\mathbf{q}=\mathbf{v}$, then by the same reasoning as above we can conclude that $\mathbf{v}-\mathbf{p}_0$ is in Ω .

Since $\mathbf{v}-\mathbf{q}_0$ is in Σ and $\mathbf{u}-\mathbf{q}_0$ is in Σ , the difference $\mathbf{u}-\mathbf{v}$ is in Σ ; in the same way, from problem I we see that $\mathbf{v}-\mathbf{u}$ is in Ω . But since the two orthogonal subspaces have only the vector zero in common, it follows that $\mathbf{u}=\mathbf{v}$.

Thus problems I and II have the same solutions u = v.

By adding to the variational expressions in problems I and II the constant terms $Q(q_0, q_0)$ and $Q(p_0, p_0)$, respectively, we can state the problems in the following form:

I: Find the shortest distance from a fixed vector \mathbf{q}_0 to the linear set Ω_0 , i.e. minimize

$$d(\mathbf{p}) = Q(\mathbf{p} - \mathbf{q}_0, \mathbf{p} - \mathbf{q}_0)$$

over all p in Ω_0 .

II: Find the shortest distance from a fixed vector \mathbf{p}_0 to the linear set Σ_0 , i.e. minimize

$$d(q) = Q(q - p_0, q - p_0)$$

over all q in Σ_0 .

Both minima d_1 and d_2 are attained by the same solution p = q = u.

The reciprocal character of the two problems is expressed by the fact that the admissibility conditions of the one are the Euler conditions of the other.

Geometrically, the functions **p** and **q** are represented in Figure 2. A glance at this figure and the theorems of Pythagoras or Thales suggest, moreover, the relations

$$d_1 + d_2 = Q(\mathbf{p}_0 - \mathbf{q}_0, \, \mathbf{p}_0 - \mathbf{q}_0)$$

and

$$\begin{aligned} \mathit{Q}(\mathsf{u} - \mathsf{p}, \mathsf{u} - \mathsf{p}) \, + \, \mathit{Q}(\mathsf{u} - \mathsf{q}, \, \mathsf{u} - \mathsf{q}) \\ &= \, 4\mathit{Q}\!\left(\mathsf{u} - \frac{\mathsf{p} + \mathsf{q}}{2}, \, \mathsf{u} - \frac{\mathsf{p} + \mathsf{q}}{2}\right) \end{aligned}$$