On the geometry of \mathcal{PR}-warped products in para-Kähler manifolds

Marian Ioan MUNTEANU

Al.I.Cuza University of Iasi, Romania
webpage: http://www.math.uaic.ro/~munteanu

(based on a joint work with Bang Yen Chen, MSU, USA)

Geometric Structures in Mathematical Physics
Golden Sands, Bulgaria: September 19 – 26, 2011
Outline

1. **CR-submanifolds**
 - Basic Properties

2. **CR-products in Kähler manifolds**
 - **CR-products**
 - Warped product **CR-submanifolds** in Kähler manifolds

3. Contact **CR-products** in Sasakian manifolds
 - Contact **CR-products**
 - Contact **CR** warped products

4. **PR warped products** in para-Kähler manifolds
 - **PR** products
 - **PR** warped products
... from the beginning

\[(M, g) \leftrightarrow (\tilde{M}, \tilde{g}, J) \text{ – Kähler manifold}\]

\[T(M) \text{ its tangent bundle; } T(M) \perp \text{ its normal bundle}\]

Two important situations occur:

- If \(J(T_x M) = T_x M\) for all \(x \in M\), \(M\) is called a complex submanifold or holomorphic submanifold.
- If \(J(T_x M) \subset T(M) \perp x\) for all \(x \in M\), \(M\) is known as a totally real submanifold.
... from the beginning

\((M, g) \leftrightarrow (\tilde{M}, \tilde{g}, J)\) – Kähler manifold

\(T(M)\) its tangent bundle; \(T(M)^\perp\) its normal bundle

Two important situations occur:

- \(T_x(M)\) is invariant under the action of \(J\):
 \[
 J(T_x(M)) = T_x(M) \quad \text{for all } x \in M
 \]

\(M\) is called \textit{complex} submanifold or \textit{holomorphic} submanifold
... from the beginning

\[(M, g) \leftrightarrow \left(\tilde{M}, \tilde{g}, J \right) \text{ – Kähler manifold} \]

\[T(M) \text{ its tangent bundle; } T(M) \perp \text{ its normal bundle} \]

Two important situations occur:

- \(T_x(M)\) is anti-invariant under the action of \(J\):

\[J(T_x(M)) \subset T(M)_x \perp \text{ for all } x \in M\]

\(M\) is known as a **totally real** submanifold
... from the beginning

In 1978 A. Bejancu

- *CR-submanifolds of a Kähler manifold. I*,
- *CR-submanifolds of a Kähler manifold. II*,

started a study of the geometry of a class of submanifolds situated between the two classes mentioned above.

Such submanifolds were named *CR–submanifolds*:
In 1978 A. Bejancu

- CR-submanifolds of a Kähler manifold. I,
- CR-submanifolds of a Kähler manifold. II,

started a study of the geometry of a class of submanifolds situated between the two classes mentioned above.

Such submanifolds were named CR–submanifolds:

\[M \text{ is a CR-submanifold of a Kähler manifold } (\tilde{M}, \tilde{g}, J) \text{ if there exists a holomorphic distribution } D \text{ on } M, \text{ i.e. } JD_x = D_x, \forall x \in M \text{ and such that its orthogonal complement } D_x^\bot \text{ is anti-invariant, namely } JD_x^\bot \subset T(M)_x^\bot, \forall x \in M. \]
Notations

For any X tangent to M:

\[PX = \tan(JX) \text{ and } FX = \nor(JX) \]

For any N normal to M:

\[tN = \tan(JN) \text{ and } fN = \nor(JN) \]

Here \tan and \nor denotes the tangential and respectively the normal component.
Notations

For any X tangent to M:

$$PX = \tan(JX) \text{ and } FX = \nor(JX)$$

For any N normal to M:

$$tN = \tan(JN) \text{ and } fN = \nor(JN)$$

Here \tan and \nor denotes the tangential and respectively the normal component.

Denote by ν the complementary orthogonal subbundle:

$$T(M)^\perp = JD^\perp \oplus \nu \quad JD^\perp \perp \nu$$
Submanifold formulas

Gauss and Weingarten formulae

(G) $\tilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y)$

(W) $\tilde{\nabla}_X N = -A_N X + \nabla^\perp_X N$

for any $X, Y \in \chi(M)$, and $N \in \Gamma^\infty(T(M)^\perp)$.

∇ is the induced connection
∇^\perp is the normal connection
σ is the second fundamental form
A_N is the Weingarten operator

$$g(A_N X, Y) = \tilde{g}(N, \sigma(X, Y))$$
Integrability

Proposition (Bejancu - 1979, Blair & Chen - 1979)

The totally real distribution $\mathcal{D} \perp$ of a CR-submanifold in a Kähler manifold is always integrable.

Proposition (Blair & Chen - 1979)

The distribution \mathcal{D} is integrable if and only if

$$\tilde{g}(\sigma(X, JY), JZ) = \tilde{g}(\sigma(JX, Y), JZ), \quad \forall \, X, Y \in \mathcal{D} \text{ and } Z \in \mathcal{D} \perp.$$

Proposition (Bejancu, Kon & Yano - 1981)

For a CR-submanifold M in a Kähler manifold, the leaf $\mathcal{N} \perp$ of $\mathcal{D} \perp$ is totally geodesic in M if and only if

$$\tilde{g}(\sigma(\mathcal{D}, \mathcal{D} \perp), J\mathcal{D} \perp) = 0.$$
Every CR-submanifold of a Kähler manifold is foliated by totally real submanifolds.
Every CR-submanifold of a Kähler manifold is foliated by totally real submanifolds.

Definition (Chen - 1981)

A CR-submanifold of a Kähler manifold \tilde{M} is called CR-product if it is locally a Riemannian product of a holomorphic submanifold N^\top and a totally real submanifold N^\perp of \tilde{M}.
Theorems of characterization

Theorem (Chen - 1981)

A \(CR \)-submanifold of a Kähler manifold is a \(CR \)-product if and only if \(P \) is parallel.
Theorems of characterization

Theorem (Chen - 1981)

A CR-submanifold of a Kähler manifold is a CR-product if and only if \(P \) is parallel.

Proof.

\(N^\top \) is a leaf of \(D \)

\(N^\top \) and \(N^\perp \) are totally geodesic in \(M \)
Every CR-product M in \mathbb{C}^m is locally the Riemannian product of a holomorphic submanifold in a linear complex subspace C^k and a totally real submanifold of a C^{m-k}, i.e.

$$M = N^\top \times N^\perp \subset \mathbb{C}^k \times \mathbb{C}^{m-k}.$$
Segre embedding:

\[S_{sq} : \mathbb{C}P^s \times \mathbb{C}P^q \longrightarrow \mathbb{C}P^{s+q+sq} \]

\((z_0, \ldots, z_s; w_0, \ldots, w_q) \mapsto (z_0 w_0, \ldots, z_i w_j, \ldots, z_s w_q)\)

\(N^\perp = q\)-dimensional totally real submanifold in \(\mathbb{C}P^q\)

\(\mathbb{C}P^s \times N^\perp\) induces a natural \(CR\)-product in \(\mathbb{C}P^{s+q+sq}\) via \(S_{sq}\)
CR-products in \(\mathbb{C}P^m \)

Segre embedding:

\[S_{sq} : \mathbb{C}P^s \times \mathbb{C}P^q \longrightarrow \mathbb{C}P^{s+q+sq} \]

\[(z_0, \ldots, z_s; w_0, \ldots, w_q) \mapsto (z_0w_0, \ldots, z_iw_j, \ldots, z_sw_q) \]

\(N^\perp = q \)-dimensional totally real submanifold in \(\mathbb{C}P^q \)

\(\mathbb{C}P^s \times N^\perp \) induces a natural CR-product in \(\mathbb{C}P^{s+q+sq} \) via \(S_{sq} \)

Remark (Chen - 1981)

There exists no proper CR-product in any complex hyperbolic space \(\tilde{M}(c) \), \((c < 0) \).
Length of the second fundamental form

Theorem (Chen - 1981)

Let M be a CR-product in $\mathbb{C}P^m$. Then we have

$$||\sigma||^2 \geq 4sq.$$

If the equality sign holds, then N^\top and N^\perp are both totally geodesic in $\mathbb{C}P^m$. Moreover, the immersion is rigid*. In this case N^\top is a complex space form of constant holomorphic sectional curvature 4, and N^\perp is a real space form of constant sectional curvature 1.

* the Riemannian structure on the submanifold M is completely determined as well as the second fundamental form and the normal connection
Warped Products $N^\perp \times_f N^\top$

$(B, g_B), (F, g_F)$ Riemannian manifolds, $f > 0$ smooth function on B
$M = B \times_f F$, $g = g_B + f^2 g_F$
Warped Products $N^\perp \times_f N^\top$

$(B, g_B), (F, g_F)$ Riemannian manifolds, $f > 0$ smooth function on B

$M = B \times_f F$, $g = g_B + f^2 g_F$

Theorem (Chen - 2001)

If $M = N^\perp \times_f N^\top$ is a warped product CR-submanifold of a Kähler manifold \tilde{M} such that N^\perp is a totally real submanifold and N^\top is a holomorphic submanifold of \tilde{M}, then M is a CR-product.
Warped Products $N^{\perp} \times_f N^{^\top}$

$(B, g_B), (F, g_F)$ Riemannian manifolds, $f > 0$ smooth function on B

$M = B \times_f F$, $g = g_B + f^2 g_F$

Theorem (Chen - 2001)

If $M = N^{\perp} \times_f N^{^\top}$ is a warped product CR-submanifold of a Kähler manifold \tilde{M} such that N^{\perp} is a totally real submanifold and $N^{^\top}$ is a holomorphic submanifold of \tilde{M}, then M is a CR-product.

Proof.

f should be a constant and $A_{J^D \perp D} = 0$ is verified.
Warped Products $N^\perp \times_f N^\top$

$(B, g_B), (F, g_F)$ Riemannian manifolds, $f > 0$ smooth function on B
$M = B \times_f F$, $g = g_B + f^2 g_F$

Theorem (Chen - 2001)

If $M = N^\perp \times_f N^\top$ is a warped product CR-submanifold of a Kähler manifold \tilde{M} such that N^\perp is a totally real submanifold and N^\top is a holomorphic submanifold of \tilde{M}, then M is a CR-product.

Proof.

f should be a constant and $A_{JD\perp D} = 0$ is verified.

Remark (Chen - 2001)

There do not exist warped product CR-submanifolds of the form $N^\perp \times_f N^\top$ other than CR-products.
Warped Products $N^\top \times_f N^\perp$

By contrast, there exist many warped product CR-submanifolds $N^\top \times_f N^\perp$ which are not CR-products.
Warped Products $N^\top \times_f N^\perp$

By contrast, there exist many warped product CR-submanifolds $N^\top \times_f N^\perp$ which are not CR-products.

\downarrow

CR-warped products
Warped Products $N^\top \times_f N^\bot$

By contrast, there exist many warped product CR-submanifolds $N^\top \times_f N^\bot$ which are not CR-products.

\[\downarrow \]

CR-warped products

Theorem (Chen - 2001)

A proper CR-submanifold M of a Kähler manifold \tilde{M} is locally a CR-warped product if and only if

\[A_{JZ}X = ((JX)\mu)Z, \quad X \in D, \quad Z \in D^\perp \]

for some function μ on M satisfying $W\mu = 0$, for all $W \in D^\perp$.

Marian Ioan MUNTEANU (UAIC)

Geometry of PR-warped products

Golden Sands, September '11
A general Inequality for CR-warped products

Theorem (Chen - 2001)

Let $M = N^\top \times_f N^\perp$ be a CR-warped product in a Kähler manifold \tilde{M}. Then

1. $||\sigma||^2 \geq 2q||\nabla(\log f)||^2$, where $\nabla(\log f)$ is the gradient of $\log f$

2. If the equality sign holds identically, then N^\top is a totally geodesic and N^\perp is a totally umbilical submanifold of \tilde{M}. Moreover, M is a minimal submanifold in \tilde{M}

3. When M is generic and $q > 1$, the equality sign holds if and only if N^\perp is a totally umbilical submanifold of \tilde{M}

4. When M is generic and $q = 1$, then the equality sign holds if and only if the characteristic vector of M is a principal vector field with zero as its principal curvature.
 (In this case M is a real hypersurface in \tilde{M}.)
Equality sign when \(\tilde{M} = \tilde{M}(c) \)

For \(CR \)-warped products in complex space forms:

Theorem (Chen - 2001)

Let \(M = N^\top \times_f N^\perp \) be a non-trivial \(CR \)-warped product in a complex space form \(\tilde{M}(c) \), satisfying \(||\sigma||^2 = 2q||\nabla(\log f)||^2 \). Then

1. \(N^\top \) is a totally geodesic holomorphic submanifold of \(\tilde{M}(c) \). Hence \(N^\top \) is a complex space form \(N^s(c) \) of constant holomorphic sectional curvature \(c \)

2. \(N^\perp \) is a totally umbilical totally real submanifold of \(\tilde{M}(c) \). Hence, \(N^\perp \) is a real space form of constant sectional curvature, say \(\epsilon > c/4 \)
Equality sign when $\tilde{M} = \mathbb{C}^m$

Theorem (Chen - 2001)

A CR-warped product $M = N^\top \times_f N^\perp$ in a complex Euclidean m-space \mathbb{C}^m satisfies the equality if and only if

1. N^\top is an open portion of a complex Euclidean s space \mathbb{C}^s
2. N^\perp is an open portion of the unit q-sphere S^q
3. up to a rigid motion of \mathbb{C}^m, the immersion of $M \subset \mathbb{C}^s \times_f S^q$ into \mathbb{C}^m is

$$r(z, w) = (z_1 + (w_0 - 1)a_1 \sum_{j=1}^{n} a_j z_j, \ldots, z_s + (w_0 - 1)a_s \sum_{j=1}^{n} a_j z_j,\ldots, 0)$$

$$w_1 \sum_{j=1}^{n} a_j z_j, \ldots, w_q \sum_{j=1}^{n} a_j z_j, 0, \ldots, 0)$$

$$z = (z_1, \ldots, z_s) \in \mathbb{C}^s, \ w = (w_0, \ldots, w_q) \in S^q \in \mathbb{B}^{q+1}$$

$$f = \sqrt{<a, z>^2 + <ia, z>^2}, \text{ for some point } a = (a_1, \ldots, a_s) \in S^{s-1} \in \mathbb{B}^s.$$
Sasakian manifolds

Another line of thought, similar to that concerning Sasakian geometry as an odd dimensional version of Kählerian geometry, led to the concept of a contact CR-submanifold:

$(\tilde{M}^{2m+1}, \phi, \xi, \eta, \tilde{g})$ Sasakian manifold: $\phi \in T^{1}_1(\tilde{M}), \xi \in \chi(\tilde{M}), \eta \in \Lambda^1(\tilde{M})$:

$\phi^2 = -I + \eta \otimes \xi, \phi \xi = 0, \eta \circ \phi = 0, \eta(\xi) = 1$

$d\eta(X, Y) = \tilde{g}(X, \phi Y)$ \hspace{1cm} (the contact condition)

$\tilde{g}(\phi X, \phi Y) = \tilde{g}(X, Y) - \eta(X)\eta(Y)$ \hspace{1cm} (the compatibility condition)

$(\tilde{\nabla}_U \phi) V = -\tilde{g}(U, V)\xi + \eta(V)U, \hspace{0.5cm} U, V \in \chi(\tilde{M})$
A contact CR submanifold M of a Sasakian manifold \tilde{M} is called **contact CR product** if it is locally a Riemannian product of a ϕ-invariant submanifold N^\top tangent to ξ and a totally real submanifold N^\perp of \tilde{M}, i.e. N^\perp is ϕ anti-invariant submanifold of \tilde{M}.
Contact CR-products

A contact CR submanifold M of a Sasakian manifold \tilde{M} is called **contact CR product** if it is locally a Riemannian product of a ϕ-invariant submanifold N^\top tangent to ξ and a totally real submanifold N^\bot of \tilde{M}, i.e. N^\bot is ϕ anti-invariant submanifold of \tilde{M}.

Theorem (M. - 2005)

Let M be a contact CR submanifold of a Sasakian manifold \tilde{M}, $\xi \in \mathcal{D}$. Then M is a contact CR product if and only if P satisfies

$$(\nabla_U P) V = -g(U_\mathcal{D}, V)\xi + \eta(V) U_\mathcal{D}$$

for all U, V tangent to M where $U_\mathcal{D}$ is the \mathcal{D}-component of U.
Theorem (M. - 2005)

Let M be a complete, generic, simply connected contact CR submanifold of a complete, simply connected Sasakian space form $\tilde{M}^{2m+1}(c)$.

If M is a contact CR product then

1. either $c \neq -3$ and M is a ϕ anti-invariant submanifold of \tilde{M} case in which M is locally a Riemannian product of an integral curve of ξ and a totally real submanifold N^{\perp} of \tilde{M},

2. or $c = -3$ and M is locally a Riemannian product of \mathbb{R}^{2s+1} and N^{\perp} where \mathbb{R}^{2s+1} is endowed with the usual Sasakian structure and N^{\perp} is a totally real submanifold of \mathbb{R}^{2m+1} (with the usual Sasakian structure).
Theorem (M. - 2005)

Let \tilde{M} be a Sasakian manifold and let $M = N^\perp \times_f N^\top$ be a warped product CR submanifold such that N^\perp is a totally real submanifold and N^\top is ϕ holomorphic (invariant) of \tilde{M}. Then M is a CR product.
Characterization theorem

Theorem (M. - 2005)

Let \tilde{M} be a Sasakian manifold and let $M = N^\perp \times_f N^\top$ be a warped product CR submanifold such that N^\perp is a totally real submanifold and N^\top is ϕ holomorphic (invariant) of \tilde{M}. Then M is a CR product.

A contact CR submanifold M of a Sasakian manifold \tilde{M}, tangent to ξ is called a contact CR warped product if it is the warped product $N^T \times_f N^\perp$ of an invariant submanifold N^T, tangent to ξ and a tot. real submanifold N^\perp of \tilde{M}.
Characterization theorem

Theorem (M. - 2005)

Let \(\tilde{M} \) be a Sasakian manifold and let \(M = N^\perp \times_f N^\top \) be a warped product \(CR \) submanifold such that \(N^\perp \) is a totally real submanifold and \(N^\top \) is \(\phi \) holomorphic (invariant) of \(\tilde{M} \). Then \(M \) is a \(CR \) product.

A contact \(CR \) submanifold \(M \) of a Sasakian manifold \(\tilde{M} \), tangent to \(\xi \) is called a contact \(CR \) warped product if it is the warped product \(N^T \times_f N^\perp \) of an invariant submanifold \(N^T \), tangent to \(\xi \) and a tot. real submanifold \(N^\perp \) of \(\tilde{M} \).

Theorem (M. - 2005)

A strictly proper \(CR \) submanifold \(M \) of a Sasakian manifold \(\tilde{M} \), tangent to \(\xi \), is locally a contact \(CR \) warped product if and only if there exists \(\mu \in C^\infty(M) \) satisfying \(W\mu = 0 \) for all \(W \in D^\perp \).

\[
A_{\phi}ZX = (\eta(X) - (\phi X)(\mu)) \ Z , \quad X \in D , \quad Z \in D^\perp .
\]
A general inequality

(the ambient \tilde{M} is not necessary a Sasakian space form)

Theorem (Hasegawa & I. Mihai - 2003, M. - 2005)

Let $M = N^\top \times_f N^\perp$ be a contact CR warped product in \tilde{M}. We have

1. $||\sigma||^2 \geq 2q (||\nabla \ln f||^2 + 1)$
2. If the equality sign holds, then N^\top is a totally geodesic submanifold and N^\perp is a totally umbilical submanifold of \tilde{M}. The product manifold M is a minimal submanifold in \tilde{M}.

(Notice that M is a hypersurface in \tilde{M} with the unitary normal vector μ).
A general inequality

(the ambient \tilde{M} is not necessary a Sasakian space form)

Theorem (Hasegawa & I. Mihai - 2003, M. - 2005)

Let $M = N^\top \times_f N^\perp$ be a contact CR warped product in \tilde{M}. We have

1. $||\sigma||^2 \geq 2q (||\nabla \ln f||^2 + 1)$
2. If the equality sign holds, then N^\top is a totally geodesic submanifold and N^\perp is a totally umbilical submanifold of \tilde{M}. The product manifold M is a minimal submanifold in \tilde{M}.

3. The case $TM^\perp = \phi D^\perp$. If $q > 1$ then the equality sign holds identically if and only if N^\perp is a totally umbilical submanifold of \tilde{M}.

4. If $q = 1$ then the equality sign holds identically if and only if the characteristic vector field $\phi \mu$ of M satisfies $A_\mu \phi \mu = -\phi \nabla \ln f - \xi$.

(Notice that M is a hypersurface in \tilde{M} with the unitary normal vector μ).
A good geometric inequality

Theorem (I. Mihai - 2004, M. - 2005)

Let $M = N^\top \times_f N^\perp$ be a contact CR warped product of a Sasakian space form $\tilde{M}^{2m+1}(c)$. Then

$$||\sigma||^2 \geq 2q \left[||\nabla \ln f||^2 - \Delta \ln f + \frac{c + 3}{2} s + 1 \right].$$
A good geometric inequality

Theorem (I. Mihai - 2004, M. - 2005)

Let $M = N^T \times_f N^\perp$ be a contact CR warped product of a Sasakian space form $\tilde{M}^{2m+1}(c)$. Then

$$||\sigma||^2 \geq 2q \left[||\nabla \ln f||^2 - \Delta \ln f + \frac{c + 3}{2} s + 1 \right].$$

Proof.

$$||\sigma(D, D^\perp)||^2 = \sum_{j=1}^{2s+1} \sum_{\alpha=1}^{q} ||\sigma(X_j, Z_\alpha)||^2$$

$$||\sigma_{\phiD^\perp}(D, D^\perp)||^2 = \sum_{\alpha=1}^{q} ||\nabla \ln f||^2 + \sum_{\alpha=1}^{q} ||\phi Z_\alpha||^2$$

$$2 \sum_{j=1}^{s} \sum_{\alpha=1}^{q} \left\{ ||\sigma_\nu(e_j, Z_\alpha)||^2 + ||\sigma_\nu(\phi e_j, Z_\alpha)||^2 \right\} = (c + 3)sq - 2q\Delta(\ln f).$$
An almost para-Hermitian manifold is a manifold \tilde{M} equipped with an almost product structure $\mathcal{P} \neq \pm I$ and a pseudo-Riemannian metric \tilde{g} such that

$$\mathcal{P}^2 = I, \quad \tilde{g}(\mathcal{P}X, \mathcal{P}Y) = -\tilde{g}(X, Y).$$

An almost para-Hermitian manifold is called para-Kähler if it satisfies $\tilde{\nabla}\mathcal{P} = 0$ identically.

A pseudo-Riemannian submanifold M of a para-Kähler manifold \tilde{M} is called invariant if the tangent bundle of M is invariant under the action of \mathcal{P}.

M is called anti-invariant if \mathcal{P} maps each tangent space $T_p M$, $p \in M$, into the normal space $T_p^\perp M$.

We put $\|X\|^2 = \tilde{g}(X, X)$.
PR products

A pseudo-Riemannian submanifold M of a para-Kähler manifold \tilde{M} is called a **PR-submanifold** if the tangent bundle TM of M is the direct sum of an *invariant* distribution D and an *anti-invariant* distribution D^\perp:

$$T(M) = D \oplus D^\perp, \quad PD = D, \quad PD^\perp \subseteq T_p^\perp(M).$$

A **PR-product** of a para-Kähler manifold is called a **PR-product** if it is locally a direct product $N_T \times N_\perp$ of an invariant submanifold N_T and an anti-invariant submanifold N_\perp.
Proposition (Chen, M. - to appear)

A \(PR \)-submanifold of a para-Kähler manifold is a \(PR \)-product if and only if \(P \) is parallel.

Proposition (Chen - 2011)

Let \(N_{\top} \times N_{\bot} \) be a \(PR \)-product of the para-Kähler \((h + p)\)-plane \(P^{h+p} \) with \(h = \frac{1}{2} \dim N_{\top} \) and \(p = \dim N_{\bot} \). If \(N_{\bot} \) is either spacelike or timelike, then the \(PR \)-product is an open part of a direct product of a para-Kähler \(h \)-plane \(P^{h} \) and a Lagrangian submanifold \(L \) of \(P^{p} \), i.e.,

\[
N_{\top} \times N_{\bot} \subset P^{h} \times L \subset P^{h} \times P^{p} = P^{h+p}.
\]
If a \(\mathcal{P}R \)-submanifold \(M \) is a warped product \(N_\perp \times f N_\top \) of an anti-invariant submanifold \(N_\perp \) and an invariant submanifold \(N_\top \) with warping function \(f : N_\perp \rightarrow \mathbb{R}_+ \), then \(M \) is a \(\mathcal{P}R \) product \(N_\perp \times N^f_\top \), where \(N^f_\top \) is the manifold \(N_\top \) endowed with the homothetic metric \(g^f_\top = f^2 g_\top \).
Proposition (Chen, M.)

If a $\mathcal{P}R$-submanifold M is a warped product $N_{\perp} \times f N_{\top}$ of an anti-invariant submanifold N_{\perp} and an invariant submanifold N_{\top} with warping function $f : N_{\perp} \rightarrow \mathbb{R}_{+}$, then M is a $\mathcal{P}R$ product $N_{\perp} \times N_{\top}^{f}$, where N_{\top}^{f} is the manifold N_{\top} endowed with the homothetic metric $g_{\top}^{f} = f^{2} g_{\top}$.

A $\mathcal{P}R$-submanifold of a para-Kähler manifold \tilde{M} is called a $\mathcal{P}R$-warped product if it is a warped product of the form: $N_{\top} \times f N_{\perp}$, where N_{\top} in an invariant submanifold, N_{\perp} is an anti-invariant submanifold of M and f is a non-constant function $f : N_{\top} \rightarrow \mathbb{R}_{+}$.
Proposition (Chen, M.)

Let M be a proper $\mathcal{P}R$-submanifold of a para-Kähler manifold. Then M is a $\mathcal{P}R$-warped product if and only if

$$A_{FZ}X = (PX(\mu))Z,$$

for some smooth function μ on M satisfying $W(\mu) = 0$, $\forall W \in \mathcal{D}^\perp$.
An optimal inequality

Theorem (Chen, M.)

Let \(M = N_\top \times_f N_\bot \) be a \(PR \)-warped product in a para-Kähler manifold \(\tilde{M} \). Suppose that \(N_\bot \) is space-like and \(\nabla_\bot (\mathcal{P} N_\bot) \subseteq \mathcal{P} N_\bot \). Then the second fundamental form of \(M \) satisfies

\[
S_\sigma \leq 2p \| \nabla \ln f \|_2 + \| \sigma^D_\nu \|_2,
\]

where \(p = \dim N_\bot \), \(S_\sigma = \tilde{g}(\sigma, \sigma) \), \(\nabla \ln f \) is the gradient of \(\ln f \) with respect to the metric \(g \) and \(\| \sigma^D_\nu \|_2 = \tilde{g}(\sigma_\nu(D, D), \sigma_\nu(D, D)) \). Here the index \(\nu \) represents the \(\nu \)-component of that object.
An optimal inequality

Theorem (Chen, M.)

Let $M = N^\top \times_f N_\perp$ be a $\mathcal{P}R$-warped product in a para-Kähler manifold \tilde{M}. Suppose that N_\perp is space-like and $\nabla_\perp(\mathcal{P}N_\perp) \subseteq \mathcal{P}N_\perp$. Then the second fundamental form of M satisfies

$$S_\sigma \leq 2p \|\nabla \ln f\|_2 + \|\sigma_\nu^D\|_2,$$

where $p = \dim N_\perp$, $S_\sigma = \tilde{g}(\sigma, \sigma)$, $\nabla \ln f$ is the gradient of $\ln f$ with respect to the metric g and $\|\sigma_\nu^D\|_2 = \tilde{g}(\sigma_\nu(D, D), \sigma_\nu(D, D))$. Here the index ν represents the ν-component of that object.

Remark (Chen, M.)

If the manifold N_\perp in the previous Theorem is time-like, then

$$S_\sigma \geq 2p \|\nabla \ln f\|_2 + \|\sigma_\nu^D\|_2.$$
An optimal inequality

Remark (Chen, M.)

For every $\mathcal{P}R$-warped product $N_T \times N_\perp$ in a para-Kähler manifold \tilde{M}, $\dim \tilde{M} \geq \dim N_T + 2 \dim N_\perp$ holds. Thus the smallest codimension is $\dim N_\perp$.
An optimal inequality

Remark (Chen, M.)

For every \mathcal{PR}-warped product $N_T \times N_\perp$ in a para-Kähler manifold \tilde{M}, $\dim \tilde{M} \geq \dim N_T + 2 \dim N_\perp$ holds. Thus the smallest codimension is $\dim N_\perp$.

Theorem (Chen, M.)

Let $N_T \times_f N_\perp$ be a \mathcal{PR}-warped product in a para-Kähler manifold \tilde{M}. If N_\perp is space-like (respectively, time-like) and $\dim \tilde{M} = \dim N_T + 2 \dim N_\perp$, then the second fundamental form of M satisfies

$$S_\sigma \leq 2p\|\nabla \ln f\|_2 \quad \text{(respectively, } S_\sigma \geq 2p\|\nabla \ln f\|_2).$$

If the equality sign holds identically, we have

$$\sigma(D, D) = \sigma(D_\perp, D_\perp) = \{0\}.$$
Main Theorem

Theorem (Chen, M.)

Let \(N_\top \times_f N_\bot \) be a space-like \(PR \)-warped product in the para-Kähler \((h + p)\)-plane \(P^{h+p} \) with \(h = \frac{1}{2} \dim N_\top \) and \(p = \dim N_\bot \). Then we have

\[
S_\sigma \leq 2p \| \nabla \ln f \|_2.
\]

The equality sign holds identically if and only if \(N_\top \) is an open part of a para-Kähler \(h \)-plane, \(N_\bot \) is an open part of \(S^p, E^p \) or \(H^p \), and the immersion is given by one of the following:
1. \(\Phi : D_1 \times_f S^p \rightarrow P^{h+p}; \)

\[
\Phi(z, w) = \left(z_1 + \bar{v}_1(w_0 - 1) \sum_{j=1}^{h} v_j z_j, \ldots, z_h + \bar{v}_h(w_0 - 1) \sum_{j=1}^{h} v_j z_j, w_1 \sum_{j=1}^{h} j v_j z_j, \ldots, w_p \sum_{j=1}^{h} j v_j z_j \right), \quad h \geq 2,
\]

with warping function

\[
f = \sqrt{\langle \bar{v}, z \rangle^2 - \langle j \bar{v}, z \rangle^2},
\]

where \(v = (v_1, \ldots, v_h) \in S^{2h-1} \subseteq \mathbb{D}^h, w = (w_0, w_1, \ldots, w_p) \in S^p, z = (z_1, \ldots, z_h) \in D_1 \) and \(D_1 = \{ z \in \mathbb{D}^h : \langle \bar{v}, z \rangle^2 > \langle j \bar{v}, z \rangle^2 \}. \)
2.

\[\Phi : D_1 \times f \mathbb{H}^p \rightarrow \mathcal{P}^{h+p}; \]

\[\Phi(z, w) = \left(z_1 + \bar{v}_1(w_0 - 1) \sum_{j=1}^{h} v_j z_j, \ldots, z_h + \bar{v}_h(w_0 - 1) \sum_{j=1}^{h} v_j z_j, \right. \]

\[\left. w_1 \sum_{j=1}^{h} j v_j z_j, \ldots, w_p \sum_{j=1}^{h} j v_j z_j \right), \quad h \geq 1, \]

with the warping function

\[f = \sqrt{\langle \bar{v}, z \rangle^2 - \langle j \bar{v}, z \rangle^2}, \]

where \(v = (v_1, \ldots, v_h) \in \mathbb{H}^{2h-1} \subset \mathbb{D}^h \), \(w = (w_0, w_1, \ldots, w_p) \in \mathbb{H}^p \) and \(z = (z_1, \ldots, z_h) \in D_1 \).
3. \(\Phi(z, u) : D_1 \times_f \mathbb{E}^p \longrightarrow \mathcal{P}^{h+p}; \)

\[
\Phi(z, u) = \left(z_1 + \frac{\bar{v}_1}{2} \left(\sum_{a=1}^{p} u_a^2 \right) \sum_{j=1}^{h} v_j z_j, \ldots, z_h + \frac{\bar{v}_h}{2} \left(\sum_{a=1}^{p} u_a^2 \right) \sum_{j=1}^{h} v_j z_j, u_1 \sum_{j=1}^{h} j v_j z_j, \ldots, u_p \sum_{j=1}^{h} j v_j z_j \right), \quad h \geq 2,
\]

with the warping function

\[
f = \sqrt{\langle \bar{v}, z \rangle^2 - \langle j \bar{v}, z \rangle^2},
\]

where \(v = (v_1, \ldots, v_h) \) is a light-like vector in \(\mathbb{D}^h, z = (z_1, \ldots, z_h) \in D_1 \) and \(u = (u_1, \ldots, u_p) \in \mathbb{E}^p, \)

Moreover, in this case, each leaf \(\mathbb{E}^p \) is quasi-minimal in \(\mathcal{P}^{h+p}. \)
4.

\[\Phi(z, u) : D_2 \times_f \mathbb{E}^p \longrightarrow \mathcal{P}^{h+p}; \]

\[\Phi(z, u) = \left(z_1 + \frac{v_1}{2} \sum_{a=1}^{p} u_a^2, \ldots, z_h + \frac{v_h}{2} \sum_{a=1}^{p} u_a^2, \frac{v_0}{2} u_1, \ldots, \frac{v_0}{2} u_p \right), \ h \geq 1, \]

with the warping function

\[f = \sqrt{-\langle v, z \rangle}, \]

where \(v_0 = \sqrt{b_1} + \epsilon \sqrt{b_1} \) with \(b_1 > 0 \), \(D_2 = \{ z \in \mathbb{D}^h : \langle v, z \rangle < 0 \} \), \(v = (v_1, \ldots, v_h) = (b_1 + \epsilon_j b_1, \ldots, b_h + \epsilon_j b_h), \) \(\epsilon = \pm 1 \),
\(z = (z_1, \ldots, z_h) \in D_2 \) and \(u = (u_1, \ldots, u_p) \in \mathbb{E}^p. \)

In each of the four cases the warped product is minimal in \(\mathbb{E}^{2(h+p)} \).
Sketch of Proof

Since N_{\perp} is a space-like totally umbilical, non-totally geodesic submanifold in \mathcal{P}^m, it is congruent

- either to the Euclidean p-sphere \mathbb{S}^p,
- or to the hyperbolic p-plane \mathbb{H}^p,
- or to a flat quasi-minimal submanifold \mathbb{E}^p.
Sketch of Proof

The non-constant solutions $\psi = \psi(s_1, \ldots, s_h, t_1, \ldots, t_h)$ of the following system of partial differential equations

\[
\frac{\partial^2 \psi}{\partial s_i \partial s_j} + \frac{\partial \psi}{\partial s_i} \frac{\partial \psi}{\partial s_j} + \frac{\partial \psi}{\partial t_i} \frac{\partial \psi}{\partial t_j} = 0
\]

\[
\frac{\partial^2 \psi}{\partial s_i \partial t_j} + \frac{\partial \psi}{\partial s_i} \frac{\partial \psi}{\partial t_j} + \frac{\partial \psi}{\partial t_i} \frac{\partial \psi}{\partial s_j} = 0
\]

\[
\frac{\partial^2 \psi}{\partial t_i \partial t_j} + \frac{\partial \psi}{\partial t_i} \frac{\partial \psi}{\partial t_j} + \frac{\partial \psi}{\partial s_i} \frac{\partial \psi}{\partial s_j} = 0
\]
Sketch of Proof

are either given by

$$\psi = \frac{1}{2} \ln \left| \left((\langle \mathbf{v}, z \rangle + c_1)^2 - (\langle j\mathbf{v}, z \rangle + c_2)^2 \right) \right|,$$

where $z = (s_1, s_2, \ldots, s_h, t_1, t_2, \ldots, t_h)$, $\mathbf{v} = (a_1, a_2, \ldots, a_h, 0, b_2, \ldots, b_h)$ is a constant vector in \mathbb{R}^{2h} with $a_1 \neq 0$, $c_1, c_2 \in \mathbb{R}$ and $j\mathbf{v} = (0, b_2, \ldots, b_h, a_1, a_2, \ldots, a_h)$; or given by

$$\psi = \frac{1}{2} \ln \left| (\langle \mathbf{v}_1, z \rangle + c) (\langle \mathbf{v}_2, z \rangle + d) \right|,$$

where $\mathbf{v}_1 = (0, a_2, \ldots, a_h, 0, \epsilon a_2, \ldots, \epsilon a_h)$, $\mathbf{v}_2 = (b_1, \ldots, b_h, -\epsilon b_1, \ldots, -\epsilon b_h)$ with $b_1 \neq 0$, z is as above and $c, d \in \mathbb{R}$.

Here $\langle \ , \ \rangle$ denotes the Euclidean scalar product in \mathbb{R}^{2h}.

Marian Ioan MUNTEANU (UAIC)

Geometry of $\mathcal{P}R$-warped products

Golden Sands, September '11 38 / 39
Thank you for attention!