Geometric Structures in Mathematical Physics

Non-existence of almost complex structures on quaternion-Kähler manifolds of positive type

Paul Gauduchon

Golden Sands, Bulgaria
September, 19–26, 2011
Joint work with

Andrei Moroianu

and

Uwe Semmelmann

Main references:

Definition 1 A Quaternion-Kähler manifold — qK manifold for short — is a (complete) oriented Riemannian manifold (M, g) of dimension $4k \geq 8$, such that the vector bundle $A(M)$ of skew-symmetric endomorphisms of the tangent bundle TM admits a vector subbundle $Q \subset A(M)$ of rank 3, satisfying the two properties:

(i) Q is preserved by the Levi-Civita connection ∇ of g, and

(ii) Q is locally generated by positively oriented almost complex structures J_1, J_2, J_3 with $J_1J_2J_3 = -1$.
Equivalently, the holonomy group of \((M, g)\) is contained in the subgroup \(Sp(1)Sp(k)\) of \(SO(4k)\):

\[
Sp(k) = \text{Hermitian symplectic group} = \text{preserves the Hermitian quaternionic structure of } \mathbb{H}^k = (\mathbb{C}^{2k}, j)
\]

\(Sp(1) = \text{group of quaternions of norm 1.}\)

The inclusion

\[
Sp(k)Sp(1) = Sp(k) \times Sp(1)/\pm 1 \subset SO(4k)
\]

is realized via the map:

\[
Sp(k) \times Sp(1) \to SO(\mathbb{R}^{4k})
\]

\[(A, p) \mapsto \{u \mapsto Aup^{-1}\} \quad \forall u \in \mathbb{H}^k = \mathbb{R}^{4k}.
\]
Model: The quaternionic projective space.

\[\mathbb{HP}^k = \mathbb{H}^{k+1}/\mathbb{H}^* \] (right action by non-zero quaternions)

For any \(x \) in \(\mathbb{HP}^k \), \(T_x \mathbb{HP}^k = \text{Hom}_{\mathbb{H}}(x, x^\perp) \)

Fix any “\(\mathbb{H} \)-basis” \(u_1 \neq 0 \) in \(x \), \(x \cong \mathbb{H} \) via the map \(p \mapsto u = u_1 p \).

We then set

\[J_1 X = X \circ_1 i, \quad \text{i.e.} \quad (J_1 X)(u) = X(u_1 ip) \]
\[J_2 X = X \circ_1 j, \quad \text{i.e.} \quad (J_2 X)(u) = X(u_1 jp) \]
\[J_3 X = X \circ_1 k, \quad \text{i.e.} \quad (J_3 X)(u) = X(u_1 kp) \]

If \(u_2 = u_1 r \) is any other “\(\mathbb{H} \)-basis” of \(x \), we get

\[\tilde{J}_1 X = X \circ_2 i = X \circ_1 (rir^{-1}) \]
\[\tilde{J}_2 X = X \circ_2 j = X \circ_1 (rjr^{-1}) \]
\[\tilde{J}_3 X = X \circ_2 k = X \circ_1 (rkr^{-1}) \]

These are linear combinations of \(J_1, J_2, J_3 \), hence generate the same rank 3 subbundle of \(A(\mathbb{HP}^k) \).
Other classical examples:

The real Grassmannians $\tilde{Gr}_4(\mathbb{R}^{4+k})$ of oriented 4-dimensional real vector subspaces of \mathbb{R}^{4+k}.

The complex Grassmannians $Gr_2(\mathbb{C}^{2+k})$ of 2-dimensional complex vector subspaces of \mathbb{C}^{2+k}.

Exercise:

1. Construct a quaternion-Kähler structure Q on these spaces in a similar way, by using the natural identifications:

 $T_x\tilde{Gr}_4(\mathbb{R}^{4+k}) \cong \text{Hom}_\mathbb{R}(x, x^\perp)$

 $T_xGr_2(\mathbb{C}^{2+k}) \cong \text{Hom}_\mathbb{C}(x, x^\perp)$

2. Show that the natural complex structure of $\tilde{Gr}_2(\mathbb{C}^{2+k})$ is not a section of Q.
Basic property:

Quaternion-Kähler manifolds are **Einstein**.

Three types:

Positive type. $\text{Scal} > 0$ (M is then compact).

Type zero. $\text{Scal} = 0$: hyperkähler \Leftrightarrow holonomy in $Sp(k) \subset SO(4k)$.

Negative type. $\text{Scal} < 0$.

In the sequel of the talk, we only consider qK manifolds of **positive** type.
Definition 2 The **twistor space** of a qK manifold is the sphere bundle \(Z = S(Q) \) of \(Q \), for a suitable norm.

Equivalently, \(Z \) is the 2-sphere bundle over \(M \), whose fiber at each point \(x \) of \(M \) is the set of those complex structures of the tangent space \(T_xM \) which belong to \(Q_x \).

Basic properties: (S. Salamon 1982)

1. \(Z \) admits a canonical **integrable** almost complex structure \(J \).

2. The horizontal distribution, \(H^\nabla \), on \(Z \) induced by the Levi-Civita connection \(\nabla \) determines a **holomorphic contact structure** \(\theta \) on \(Z \), with values in the holomorphic line bundle \(L = TM/H^\nabla \):

\[\theta \wedge (d\theta)^k \] is a nowhere vanishing holomorphic section of \(K_Z \otimes L^{k+1} \), hence determines an isomorphism:

\[L^{k+1} \cong K_Z^{-1}. \]

3. \(Z \) admits a **Kähler-Eistein metric**, of positive scalar curvature.
It follows that Z is a **Fano contact manifold**, of (complex) dimension $2k + 1$, admitting a Kähler-Einstein metric.

Conversely:

Theorem 1 (C. LeBrun 1995) *Any Fano contact manifold admitting a Kähler-Einstein metric — necessarily of positive scalar curvature — is the twistor space of a q_k manifold.*

Alternative proof by A. Morioianu in 1998 in the case when Z is spin (in particular when k is odd.)
Dimension 4:

Definition 3 An oriented (complete) four-dimensional Riemannian manifold (M, g) is called quaternion-Kähler if:

1. g is Einstein, and
2. the conformal class $[g]$ is anti-self-dual, i.e. $W^+ = 0$.

We then have

$$Q \cong A^+ M$$

the bundle of self-dual skew-symmetric endomorphisms, and the twistor space Z coincides with the Atiyah–Hitchin–Singer twistor space.

Examples:

1. The standard sphere S^4
2. The complex projective space \mathbb{CP}^2, equipped with the Fubini-Study metric and the reverse standard orientation.
The Wolf spaces (J. A. Wolf 1965)

1. Classical Wolf spaces:
\[\mathbb{H}P^k = Sp(k+1)/Sp(k) \times Sp(1), \]
\[\tilde{Gr}_4(\mathbb{R}^{4+k}) = SO(4+k)/SO(k) \times SO(4), \]
\[Gr_2(\mathbb{C}^{2+k}) = SU(2+k)/S(U(k) \times U(1)) \]

2. Exceptional Wolf spaces:
\[G_2/SO(4), \quad F_4/Sp(3)Sp(1), \]
\[E_6/SU(6)Sp(1), \quad E_7/Spin(12)Sp(1), \]
\[E_8/E_7Sp(1) \]

All are symmetric spaces of compact type, one for each compact simple Lie group \(G \).

For each \(G \), the corresponding twistor space has a two-fold description:

1. The \(G \)-adjoint orbit of the highest root \(i\theta \) in \(\mathfrak{g} \) (J. A. Wolf 1965),

2. the projectivization \(\mathbb{P}(O_{\text{min}}) \) of the minimal nilpotent orbit in \(\mathfrak{g}^C = \) the unique closed orbit in \(\mathbb{P}(\mathfrak{g}^C) \) (A. Beauville 1998)
So far, Wolf spaces are the **only known examples** of qK manifolds of positive type.

Current conjectures:

C_1. All qK manifolds of positive type are Wolf spaces (C. LeBrun–S. Salamon)

C_2. All Fano contact manifolds are of the form \(\mathbb{P}(\mathcal{O}_{\text{min}}) \) (A. Beauville)

Notice: C_2 contains the additional conjecture:

C_3: All Fano contact manifolds admit a Kähler-Einstein metric.

Known results (so far):

1. The conjecture C_1 has been proved if $k = 1$ (N. Hitchin 1981, Friedrich–Kurke 1982) and $k = 2$ (Poon–Salamon 1991, LeBrun–Salamon 1994). As far as I know, C_1 has remained open for $k > 2$, and conjectures C_2, C_3 for $k \geq 1$.

2. For any k, there are only finitely many qK manifolds of positive type (LeBrun-Salamon, *op. cit.*, relying on works of Mori, Višnevski etc... on Fano manifolds).
Compatible almost complex structures on qK manifolds of positive type

An almost complex structure \(J \) on a qK manifold \((M, g, Q)\) is called **compatible** if \(J \) is a section of \(Q \).

The following theorem was established in 1998 by D. Alekseevsky, S. Marchiafava and M. Pontecorvo (with a participation of P. Piccinni):

Theorem 2 Quaternion-Kähler manifolds of positive type have no globally defined compatible almost complex structure. Equivalently, the twistor fibration \(Z \xrightarrow{\pi} M \) has no global section.

Recall that the natural complex structure of the complex Grassmannians \(Gr_2(\mathbb{C}^{2+k}) \) is **not** compatible with the quaternion-Kähler structure.
The main goal of this talk is to provide a proof of the following theorem:

Theorem 3 Quaternion-Kähler manifolds of positive type have no globally defined almost complex structure, except for the complex Grassmannians $Gr_2(C^{2+k})$.

Previously known results:

1. Quaternionic projective spaces \mathbb{HP}^k have no almost complex structures (F. Hirzebruch 1953, $k \neq 2, 3$, W. S. Massey 1962)

2. Grassmannians $\tilde{Gr}_4(\mathbb{R}^{4+k})$ have no almost complex structure, except, possibly, for $\tilde{Gr}_4(\mathbb{R}^8)$ and $\tilde{Gr}_4(\mathbb{R}^{10})$ (P. Sankaran 1991, Z.-Z. Tang 1994).

3. S^4 and \mathbb{CP}^2 have no almost complex structure (e.g. use the criterion $\chi + \tau \equiv 0 \mod 4$ for 4-dimensional compact almost complex manifolds).
Proof of Theorem 3.

By the above, we can assume that $k \geq 2$.

The proof then relies on the Atiyah–Singer index theorem and on the following facts:

Fact 1. Any qK manifold M of positive type has $b_2(M) = 0$, except for the complex Grassmannians $Gr_2(\mathbb{C}^{2+k})$ (C. LeBrun–S. Salamon, op. cit.)

We can then assume $b_2(M) = 0$.

Fact 2. For any qK manifold M, the complexified tangent bundle $T^C M$ is locally of the form:

$$T^C M = H \otimes \mathbb{C} E$$

where:

$H =$ rank 2 complex vector bundle induced by the standard representation of $Sp(1)$ on $\mathbb{H} = \mathbb{C}^2$,

$E =$ rank $2k$ complex vector bundle induced by the standard representation of $Sp(k)$ on $\mathbb{H}^k = \mathbb{C}^{2k}$.
Beware however that, except for \mathbb{HP}^k, neither H nor E are defined globally, only the quotients $H/\pm 1$ and $E/\pm 1$ are (S. Salamon 1982). Recall that the holonomy group is $Sp(k)Sp(1) = Sp(k) \times Sp(1)/\pm 1$, not $Sp(k) \times Sp(1)$.

Fact 3. A qK manifold M of positive type and of dimension $n = 4k$ is spin iff either $M = \mathbb{HP}^k$ or k is even (S. Salamon 1982)

If so, the spinor bundle of M is of the form

$$\Sigma M = \bigoplus_{p+q=k} R^{p,q},$$

by setting

$$R^{p,q} = \text{Sym}^p H \otimes \Lambda^q_0 E$$

where $\text{Sym}^p H$ denotes the p-th symmetric complex tensor power of H and $\Lambda^q_0 E$ denotes the primitive part of $\Lambda^q E$ wrt the (complex) symplectic structure of E

(cf. *e. g.* Kramer–Semmelmann–Weingart 1999).
The twisted spinor bundle $\Sigma M \otimes R^{p,q}$ is then globally defined — even if M is not spin — iff $p + q + k$ is even.

The corresponding (twisted) Dirac operator is then denoted by $D^{p,q}$.

Fact 4. Assume that $p + q + k$ is even, so that $\Sigma M \otimes R^{p,q}$ and $D^{p,q}$ are globally defined on M. Then, the index of $D^{p,q}$ is given by

1. $\text{ind}D^{p,q} = 0$ if $p + q < k$
2. $\text{ind}D^{p,q} = (-1)^q (b_{2q-2}(M) + b_{2q}(M))$ if $p + q = k$.

(LeBrun–Salamon *op. cit.*, Semmelmann–Weingart 1982).
Fact 5: Atiyah-Singer Index Theorem.

In general, for any (oriented, even-dimensional) manifold M and for any complex vector bundle V over M, the index of the twisted Dirac operator

$$D_V : \Gamma(\Sigma^+ M \otimes V) \to \Gamma(\Sigma^- M \otimes V)$$

is given by the following index formula:

$$\text{ind}D_V = \left(\text{ch}(V) \hat{A}(TM) \right) [M]$$

where $\Sigma^\pm M$ denote the spinor bundles of M.

This still makes sense and holds true whenever $\Sigma M \otimes V$ is globally defined, even if M is not spin and V is only defined up to ± 1.

End of the proof of Theorem 3.

Assume that M is a qK manifold of positive type and apply the index formula to

$$V = T^C M \otimes \text{Sym}^{k-2} H = E \otimes H \otimes \text{Sym}^{k-2} H$$

(recall, we assumed $k \geq 2$).

By using the Clebsch-Gordan decomposition of $H \otimes \text{Sym}^{k-2} H$, we get

$$V = R^{k-1,1} \oplus R^{k-3,1}$$

Notice that $\Sigma M \otimes R^{k-1,1}$ and $\Sigma M \otimes R^{k-3,1}$ are both globally defined — hence also $\Sigma M \otimes V$ — since they both satisfy the rule $p + q + k$ is even (equal to $2k$ and $2k - 2$ respectively).

We then have

$$\text{ind} D_V = \text{ind} D^{k-1,1} + \text{ind} D^{k-3,1}$$

$$= -1 \quad \text{by using Fact 4 with } b_2(M) = 0,$$

$$= \left(\text{ch}(T^C M) \text{ch}(\text{Sym}^{k-2} H) \hat{A}(TM) \right) [M]$$

by using Fact 5 (index formula).
Notice that $\text{ch}(\text{Sym}^{k-2} H)$ is well-defined, even if $\text{Sym}^{k-2} H$ is not (if so, define $\text{ch}(\text{Sym}^{k-2} H)$ as $\left(\text{ch}(\text{Sym}^{k-2} H) \otimes 2\right)^{1/2}$).

Now, assume, for a contradiction, that M admits an almost complex structure, i.e. that $TM = T$ is a complex vector bundle. Then

$$T^C M = T \oplus \overline{T} = T \oplus T^*.$$

Since H is (complex) symplectic, hence self-dual, the term $\text{ch}(\text{Sym}^{k-2} H) \hat{A}(TM)$ in the rhs of the index formula only involves terms of degree 4ℓ.

Since $\text{ch}_j(T^*) = (-1)^j \text{ch}_j(T)$ — components of degree $2j$ — and M is of dimension $4k$, in the above index formula we may replace T^C by $T \oplus T$, hence $\text{ch}(T^C)$ by $2 \text{ch}(T)$.

20
It follows that

\[\text{ind} D_V = 2 \left(\text{ch} \left(\text{Sym}^{k-2} H \right) \text{ch} (T) \hat{A} (TM) \right) [M]. \]

On the other hand,

\[\left(\text{ch} \left(\text{Sym}^{k-2} H \right) \text{ch} (T) \hat{A} (TM) \right) [M] \]

is the index of the twisted Dirac operator acting on sections of

\[\Sigma^+ M \otimes \text{Sym}^{k-2} H \otimes T, \]

which is globally defined on \(M \) (as \(k - 2 + k = 2k - 2 \) is even).

It is then an integer, so that \(\text{ind} D_V \) must be even.

This contradicts \(\text{ind} D_V = -1 \), hence completes the proof of Theorem 3.
Weakly complex qK manifolds:

Definition 4 A manifold M is weakly complex — or stably complex — if $TM \oplus \mathbb{R}^\ell$ can be given a structure of complex vector bundle, where \mathbb{R}^ℓ here stands for the trivial vector bundle of rank ℓ.

By using an easy variant of the above argument, we get

Theorem 4 Quaternion-Kähler manifolds of positive type of dimension $4k$, $k \geq 2$, are not weakly complex.

Proof: In the last step of the above argument, assume, for a contradiction, that $T \oplus \mathbb{R}^\ell$ is a complex vector bundle, for some integer ℓ, and use as a the twisting bundle $V = (TM \oplus \mathbb{R}^\ell)_C \otimes \text{Sym}^{k-2}H$ instead of $V = T^CM \otimes \text{Sym}^{k-2}H$. Then, observe that the additional term in the index formula is $\ell \text{ind}D^{k-2,0}$, which is 0 by Fact 4.

Notice: S^4 is weakly complex.
Inner symmetric spaces of compact type

Wolf spaces are all irreducible inner symmetric spaces of compact type, i.e. are of the form \(G/H \), where \(G \) is a compact simple Lie group and \(\text{rk} H = \text{rk} G \), i.e. a maximal torus of \(H \) is a maximal torus of \(G \).

Inner symmetric spaces of compact type are even-dimensional. The irreducible, simply-connected ones are:

1. The Wolf spaces
2. The irreducible Hermitian symmetric spaces = the adjoint orbits of compact simple Lie groups
3. The even-dimensional spheres \(S^{2\ell} \)
4. The real Grassmannians \(\tilde{G}r_{2p}(\mathbb{R}^{2p+n}) \)
5. The quaternionic Grassmannians \(Gr_k(\mathbb{H}^{k+\ell}) \)
6. The Cayley projective space \(F_4/\text{Spin}(9) \)
7. The two exceptional inner symmetric spaces \(E_7/(SU(8)/\mathbb{Z}_2) \) and \(E_8/(\text{Spin}(16)/\mathbb{Z}_2) \).
The techniques used above can be extended to a large class of inner symmetric spaces, in addition to Wolf spaces covered by Theorem 3, to get:

Theorem 5 An irreducible, simply-connected, inner symmetric space of compact type of dimension $4k$ is weakly complex if and only if it is a sphere S^{4k} or a Hermitian symmetric space (of even complex dimension).

Remark 1. Spheres of all dimensions are weakly complex, whereas Hermitian symmetric spaces of all (complex) dimensions are complex manifolds.

Remark 2. Our approach is ineffective for non-inner symmetric spaces of compact type, as the index of any homogeneous Dirac operator defined on such spaces is zero (R. Bott 1965).
Theorem 5 covers all inner symmetric spaces of compact type, except for:

1. The real Grassmannians of the form $\tilde{G}r_{2p}(\mathbb{R}^{2p+q})$, with p and q both odd

2. The exceptional inner symmetric space $E_7/(SU(8)/\mathbb{Z}_2)$, which is of dimension 70

Since the case of all even-dimensional real Grassmannians, except for $\tilde{G}r_4(\mathbb{R}^8)$, $\tilde{G}r_6(\mathbb{R}^{12})$ and $\tilde{G}r_4(\mathbb{R}^{10})$, was covered — by different methods — by P. Sankaran and Z.-Z. Tang op. cit., the only remaining open question about the existence issue of a (weak) complex structure on inner symmetric spaces of compact type is:

Question. Does there exists a (weak) complex structure on the exceptional inner symmetric space $E_7/(SU(8)/\mathbb{Z}_2)$?