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Computers and Mathematics

This month’s column

One oft-repeated argument in favor of computer algebra systems is
that they free the user from large amounts of tedious. messy, detailed
calculations. where it is so easy to make a small slip that renders the
result at best inaccurate and at worst, if real-world applications are
involved. plain dangerous. But of course, just as the old pencil and
paper approach carried its own risks of error, so too do today's high-
tech methods. A slight mistake in typing and who knows what may
result?

Take a look at the screen output from a Maple session shown below.

Edit Font Hnit Settings Windows @R
Status ] Herd Disk

B e R ]
-

| Foctor{t™=2 « 4%t + 1mod(2),

4= 13
|

facior (1™ « 4=t « 1modil),

— e

Spot the difference

At first glance this looks like a “proof™ that
(r+1)3 =t2+1.

If you take a closer look you will see that there is, however. a difference
between the two commands. namely one of capitalization. Readers fa-
miliar with Maple syntax will recognize what is going on here, but
now imagine that, even though you are quite “expert” with Maple, you
are in the middle of a long and complicated Maple session, streching
over several screenfulls, and you inadvertantly type factor instead of
Factor. Maple might well continue to respond obediently to every-
thing you subsequently ask of it, and will gaily produce an answer for
you. But it will, of course, be the wrong answer, and you might well
be quite unaware of what was, after all, not a mathematical error but

Edited by Keith Devlin

a typing mistake caused by not hitting the shift key at the right mo-
ment; a simple error in capitalization that does not cause the program
to hiccup, but which renders meaningless the rest of the calculation.

This particular example is taken from the second of this month's
two articles, both of which concem these all-purpose mathematics-
by-computer systems that many of us are using these days. The first
article comes from David Stoutemyer, who has been involved in the
development of several such systems. He writes from the standpoint of
the system developer, someone who knows some of the dangers and
limitations involved in using such systems.

Following Stoutemyer's piece, Charles Livingston describes some
work in knot theory he did with Jim Davis at Indiana University. using
the computer algebra system Maple.

From the messages I receive, it is obvious that this column is widely
read by an eager audience. So it is clearly not going to fade away for
lack of readers. There are a great many people out there who are
interested in the interplay between mathematics and computing. But,
1t can only continue if there is a steady supply of articles to print.
Contributions are welcomed on all issues to do with computers and
mathematics, particularly articles that deal with the use of computers
in mathematical research. Just drop me a line if you have something
you want to write about. My address is:

Professor Keith Devlin

Department of Mathematics

and Computer Science

Colby College

Waterville, Maine 04901

Correspondence by electronic mail is preferred, to:
kjdevlin@colby.edu

Crimes and Misdemeanors
in the Computer Algebra Trade

David R. Stoutemyer*
University of Hawaii and Soft Warehouse, Inc.

As a co-author of the Derive® and muMarh™ programs, a past
contributor to Reduce and Macsyma®, and an occassional
user of some other computer-algebra systems, I am delighted
about the rapidly increasing acceptance of computer algebra.

*David Stoutemyer is a professor of computer science at the University of
Hawaii, Honolulu. HI 96822, and is the co-founder of Soft Warehouse, Inc..
3615 Harding Ave., Suite 505, Honolulu, HI 96816.
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.owever, it is important for users to be aware of some of
the limitations of such systems to use them wisely. First,
some definitions:

A bug is something bad that a program does contrary to
the programmers’ intent—such as returning 5 for the result
of 2+2.

A limitation is something a program can’t do that a user
wishes it could. Theorerical limitations include undecidabil-
ity results from logic and the theory of computation. The
major resource limitation is exhaustion of computer memory
due to the size of intermediate or final expressions. Another
resource limitation is that a computation might take an unac-
ceptable amount of time. Algorithmic limitations arise from
the fact that it is impractical to coordinate all known math-
ematics and reasoning power in a reasonable-sized program
using a reasonable-sized programmer staff for a reason-
able length of time. For example, many computer-algebra
systems cannot determine a closed-form antiderivative of
|z|~', such as In z sign z, even though these same systems
can determine much more impressive antiderivatives. Such
expertise gaps are inevitable.

Computer-algebra systems also rely on various assump-
tions, such as certain subexpressions being real or nonneg-
ative. Unfortunately, the documentation or displayed results
might not state relevant assumptions, and stated assumptions
might be inapplicable in a significant portion of applications.
- Txperiment 1: Determine how the computer-algebra sys-

" tems available to you and your colleagues simplify
J|z|~'dz.

1. Bugs

Computer algebra programs tend to be large and complicated.
Even when there are no known bugs in the most recent
versions of these programs, most authors would admit that
earlier versions had some bugs. The empirical evidence thus
suggests that it is prudent to make sure that you have the
current version and to act as if even the current version has
bugs by checking results several ways.

Computer algebra systems don’t necessarily have a
higher rate of bugs per megabyte than other programs.
Rather, based on past history, most programmers would
agree that most large or complicated programs have bugs.
Examples of large and/or complicated programs include
many numerical methods packages, the compilers that com-
pile them, the operating systems under which they run,
the CPU microcode in chips on which they run, and the
programs that were used to design the chips and computers.
Don’t despair. These systems are clearly useful despite their
bugs. However, results obtained with the help of computers
and programs deserve the same scrutiny as results obtained
with help of slower devices such as calculators, tables, paper

nd pencil, or blackboard and chalk.

Be grateful when bugs are spectacular, such as producing
obvious nonsense or crashing the program in a way that
requires you to abandon the program and restart it or the
computer. What we must guard against most is acceptance

of an incorrect result because it superficially looks plausible
and we are too gullible or lazy to check it.

One way to check a computer-algebra result is to
derive it on more than one computer-algebra system. It is
unlikely that two systems have the same bug. However, two
systems might employ the same assumptions about branch
selection, continuity, etc., and these assumptions might be
inappropriate to your problem. Thus it is also important
to read the documentation thoroughly to discover stated
assumptions. Moreover, the experiments in this paper might
reveal some of the unstated assumptions.

For example, you might discover that the default domain
of variables is real numbers and that some of the corre-
sponding transformations might be invalid if you substitute
complex values after exploiting these transformations.

There is an additional benefit of trying more than one
system: Even when the results are equivalent, you might find
that different systems produce the most attractive form for
various problems. You will also discover that most systems
have features that are absent or weaker in others so that you
will learn to exploit the best features of each system.

Many operations have an inverse, so an additional way
to check a result is to use the inverse operation to see if you
obtain a result that is equivalent to the input. It is unlikely
that there are self-canceling bugs that transform an incorrect
result back into a correct input.

As examples of such checks, invert an inverse matnx.
expand a factored result, or differentiate an antiderivative.

This process often yields an expression that 1s not
identical in form to the input: If the input is a form that
would not be produced by any of the various simplification
alternatives, then you might find it impossible to transform
the inverted result to the same form as the input without
tedious manual intervention. Consequently, it is usually best
to try, instead, simplifying the difference between the input
and the inverted result to 0. Computer-algebra systems are
usually much better at simplifying to O expressions that are
equivalent to O than they are at simplifying to a particular
form an expression that is not equivalent to a rational
number.

However, for the full class of irrational expressions
allowed by most computer-algebra systems, it is probably
impossible for any algorithm to guarantee simplification to 0
in a finite number of steps an arbitrary finite expression that
is equivalent to 0. Thus, if the above difference does not
simplify to an expression that you recognize as equivalent to
0, try substituting random numbers in the domain of interest
for some or all variables and try to simplify that to 0.
For irrational expressions, this usually requires approximate
arithmetic and judging whether the residual is convincingly
small compared to its components. A programming bug
is likely to give a result that appears wrong for most
random substitutions. Some design assumptions discussed
below entail formula transformations that are invalid for
subexpressions that are negative or have an imaginary part
outside the interval (=7, 7). so be sure to include sets of
such values if they are relevant. Other design assumptions
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discussed below entail transformations that are invalid only
at isolated points or curves in the complex plane, so these
are unlikely to be revealed by random substitutions.

Another way to check a result is graphically. For
example, Figure 1 shows a Derive screen in which window
1 in the upper left comer is a plot of expression 1
and window 2 in the upper right comer is a plot of
expression 2. Expression 1 is a continuous antiderivative
of (2+cosx)~' computed by Derive, whereas expression 2
is a discontinuous antiderivative specialized from formula
4.3.133 in Abramowitz and Stegun [1]. As illustrated by this
comparison. a plot is a quick and comprehensible way to
check a result at several hundred sample points.

. - / -
// s

_

Zﬁ&m[—] zﬂum[—
CoS (x) + 1 3 (COS (x) + 1)

3 3 3

SIN (x) 43 SN (x) ]

43 x

COMWMD: Algebra Center Delete Help Move Options [JHI] Quit Scale Ticks Window
Zoom

Enter option

Cross x:1 gyl Scale x:4 TH | Derive ZD-plot

Figure 1: Altemative Antiderivatives of (2 +cosx)™'

Experiment 2: For all accessible computer-algebra systems
plot (2+cosz)”! and its symbolic antiderivative to
determine if the latter introduces spurious discontinu-
ities. To see that most integral tables and textbooks are
fallible too, plot an analogous antiderivative from each
of the accessible tables and calculus texts. Don’t be
fooled if gullible plotting algorithms join discontinu-
ities by spurious near-vertical line segments. This class
of antiderivatives is discussed by Jeffrey and Rich [2],
by Freese and Ortel (3], and by Kahan [4].

2. Theoretical and Practical Limitations

As implied by the preceding remark about the undecidability
of recognizing 0, there are theoretical limitations to what is
computable. Surprisingly, one of the theoretical difficulties
is recognizing 0 in expressions composed of transcendental
constants such as e® or 7w + e. For most such compositions,
it is unknown whether they are rational or irrational.

For example, suppose a computer-algebra system is
requested to divide by the expression

e™V18 _ 262, 537, 412, 640, 768, 745.

Could it be 0? Six-digit and sixteen digit floating point
arithmetic both yield magnitudes small enough compared
to the two terms to be attributable to roundoff. Most
computer-algebra systems provide arbitrary-precision ap-
proximate arithmetic. Consequently, such a system can keep
increasing the precision until at, say, 42 digits it obtains a
result such as

262537412640768744.999999999999250072597198,

which is strong evidence that the expression is not equivalent
to 0. Arbitrary-precision interval arithmetic could enable the
system to prove this rigorously by brute force. This well-
known example has been proved irrational by more elegant
means, but the point is that there is a general programmable
way to prove that constant expressions are not equivalent
to 0. The theoretical difficulty is that this method can
never prove that an expression is equivalent to 0. If an
expression really is equivalent to O, such as e'™ + 1, then the
interval always contains 0, so the system keeps increasing
the precision until it exhausts memory, thus aborting the
proof.

In practice, a more important limitation on achieving
explicit exact solutions is the expressability of polynomial
zeros in terms of radicals: This is often impossible for
polynomials of degree exceeding 4, and the exact solution
of a general quartic is so unwieldy that it is better not
to request it. Even the exact solution to a general cubic is
fairly obscene. User’s often don't appreciate the implications
for solving one polynomial equation or a system of such
equations exactly. For example, it is usually impossible to
determine the exact eigenvalues and eigenvectors of a matrix
exceeding 4 x 4 and impractical for a matrix exceeding 3 x 3
unless you are lucky. Similarly, it i1s usually impossible to
obtain an exact explicit antiderivative of a rational function
having a random fifth degree denominator.

Another frequent limitation on achieving explicit exact
solutions is the size of intermediate or final results. For
example, the expanded determinant of the n x n matrix
having n? distinct letters as entries has n! terms, each with
n letters, for a total of about (n + 1)! symbols. The inverse
of that matrix has n’ entries, each with that determinant as
a denominator dividing a numerator that has (n — 1)! terms,
each having n — | letters. Thus, the inverse of the general
n x n matrix is not very useful for n beyond about 3 or 4,
depending on your tolerance for lengthy, boring results that
convey no insight.

3. Sets of Measure Zero
When asked to determine an antiderivative of r* with
respect to z, with k being an unrestricted variable, most
systems respond z**'/(k + 1). Although this is incorrect
for k = —1, the implementor might claim the justification
that this is a set of measure 0 among all complex, real or
integer exponents. However, a glance through mathematical
literature reveals that an exponent of —1 is actually quite
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common. Indeed, sets of measure O are often the focus of

an analysis—for example, the zeros of det(A — Al).

Some systems might pause to ask the user whether or
not k = —1 before returning a result appropriate to the
response. This is nice, but such queries are baffling when
generated indirectly by an intermediate problem that bears
no obvious relation to the user’s input. For example, an
ordinary differential equation solver might ask whether or
not 1 equals a dummy variable that the user has never
seen before. Moreover, such queries can be inconvenient
when you want to be away from your computer during
a lengthy computation. Consequently, some systems permit
you to declare domain restrictions on variables before
starting a sequence of calculations, using these declarations
to determine if a candidate result is valid throughout the
default and declared domains of variables.

If Derive cannot determine from the default and declared
domains of variables that expression k excludes —1, then
it returns (z%*! — 1)/(k + 1) for the above antiderivative,
following a suggestion of William Kahan's. The limit of this
expression is In  as k — —1, so the expression gives the
correct result for any specific numeric value of k, provided
you use the lim function to replace k by that specific
number. Although users are likely first to substitute —1 for
k giving 0/0, this indeterminate form suggests that they
then use the limit. In contrast, substituting —1 for k in
%! /(k + 1) gives z°/0, which simplifies to its limit 1/0.
representing complex oc rather than Inz.

Experiment 3: Determine how all accessible systems treat
[z*dr both with and without a declaration that
k#-1.

The above transformation z° — 1 raises another issue
about ignoring a set of measure 0: The cancellation of
polynomial greatest common divisors. Most systems either
automatically or optionally transform an expression such as

' +2r° +37r+2
13 +4r°+5r+6

to (z + 1)/(z + 3), thus gratuitously removing the removable
singularities at the zeros of z°+x +2. This reduction usually
gives a more meaningful and concise result, but not always.
An algebraist might regard the domain as a quotient field in
which the unreduced and reduced expressions are equivalent.
An analyst might feel differently.

It would be nice to have the option of simplifying this
example to a conditional expression of the form

if 77+ 2+2 50 then (z+1)/(z +3) else 0/0.

However, it would be challenging to simplify thoroughly
combinations of such expressions as they grow through a
long sequence of calculations. After seeing results laden
with complicated provisos or after not obtaining results
because of exhaustion of memory or patience, Optimistic
users might want to suppress this mechanism on all but
simple problems. Fateman [5] discusses some experimental
work of this nature.

If a system transforms z° to 1, then, for consistency
between the algebra and arithmetic, the system should also
transform 0° to 1. Kahan [6] and Graham, Knuth, and
Patashnik [7] give different persuasive reasons why 0°
should ordinarily simplify to 1 even in a system that does
only arithmetic.

Experiment 4: Determine how all accessible calculators,
numeric and symbolic programs treat z° and 0".

David Jeffrey pointed out to me another example of
ignoring a set of measure O in solving an equation such
as ¢z = 0 for z. Most systems return only r = 0, but
if declarations don’t exclude ¢ = 0, then another solution
is ¢ = 0. Since we requested the values of r that satisfy
the equation, we could express the solution set somewhat
awkwardly as

r = {if ¢ =0 then @ else 0}

where @ is a unique new variable designating “anything". In
contrast. there is less need to worry about the case ¢ =0 in
solving cx = 1 for z, because the solution z = 1/c contains a
manifest indication of a limit solution at r = 1/0 = complex
oc. It is the invisible failures of a formula that are most
dangerous.

A similar issue arises in reducing to row-echelon form
matrices having nonnumeric entries. What do we do when
the only remaining pivot choices are symbolic expressions
that don't exclude 0? For example,

1 2 .
(0 0) if k=1.
(l 0) if k=1.
0 1

Corless. Jeffrey, and Nerenberg [8] devised a generalization

of the LU decomposition that addresses this.

Experiment 5: Determine how all accessible computer-
algebra systems solve ¢z = 0 and row reduce the
above matrix example.

Most systems permit substitution of x. —c. or complex
oc for a variable. Thus. to avoid canceling removable sin-
gularities at oc, these systems could conservatively simplify
T — I to a conditional expression such as

1 2
Row Echelon ( oo ) =

if || #oc thenOelse 1 —1

Although taking z = Iny makes r —r — O and y/y — 1
equivalent misdemeanors, it is safe to say that a system that
didn’t simplify £ — z to 0 would not be widely appreciated.
However, a system that permits infinity as a constant
should at least resist incorrect transformation of expressions
involving that constant.

Experiment 6: Determine how all accessible systems doc-
ument and automatically simplify > — . > /x. 0%
and 1=,

As suggested by the previous sentence, a sysiem that
documents assumptions is partially exonerated. The guilt
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vanes with the ease of locating such wamings in the
documentation.

4. Verification Not Included

In order to construct solutions, humans and computer-algebra

systems sometimes take steps that might introduce spurious

solutions. so each of the candidates thus generated should
be verified.

For example, squaring both sides of the equation
VT = 1— r generates a related quadratic having two
solutions. only one of which satisfies the original equation.
Unfortunately, it is very hard to verify such candidates
in general. For example, the cubic and quartic formulas
Can generate incredibly large and messy nested radicals
or inverse trigonometric expressions, and when they are
substituted into the original equation, no computer-algebra
system can currently simplify the difference in the two sides
to 0. For this reason, many computer-algebra systems make
no attempt at such verification, leaving it to the user. Un-
fortunately. some of these systems do not state that warning
in the documentation or display a waming whenever such
a dangerous transformation is done. If there is a prominent
wamning, then perhaps we could categorize the weakness as
an evasion of responsibility rather than a crime. It is better
if a system makes an attempt at verification and issues a
wamning whenever a candidate could be neither verified nor
rejected.

Experiment 7: Determine which accessible systems cor-
rectly solve the above example. Determine if those
that return an incorrect solution warn the user either
during the solution or in the documentation.

As another example, if a computer-algebra system can
determine an exact antiderivative valid throughout an open
interval, then the easiest way to determine a corresponding
definite integral over that interval is to compute the differ-
ence in the limits of the antiderivative as the integration
variable approaches the endpoints from within the interval.
Unfortunately, it is impossible to guarantee finding and
assessing the integrability of all internal singularities in the
integrand even when there are no extra nonnumeric parame-
ters in the integrand, and it takes a lot of sophisticated code
to decide about a worthwhile percentage of examples that
arise in practice. Again, many computer-algebra systems
make no attempt at such verification, leaving it to the user,
and unfortunately, some of the systems do not state that
warning in the documentation and do not issue a waming
whenever attempted verification is indecisive.

Experiment 8: Determine how the systems available to you
and your colleagues document and treat

2 b
/ z72dr and / (r — ) ?dxr.
-3 a

A growing community of computer scientists believe
that hardware and software should routinely verify every
operation including those that should not generate spurious
solutions. For example, every muitiply would be checked
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by a divide. This would increase the program size and
computing time, but the rapid increase in computer power
should increase acceptance of this idea.

5. Branch Abuse and Sins of Omission

It is desirable for simplification to commute with substitution
or limits. In other words, it is desirable for a transformed
expression to give the same result as the original when
numbers in the domain of interest are substituted for
variables. Failing that, it is desirable that the limit of the
original and transformed expressions should be equivalent as
each variable therein approaches any number in the domain
of interest. An earlier section described common violations
of the first goal or both at sets of “measure zero™.

This section describes commonly employed computer-
algebra transformations that violate both goals for at least
half the real numbers or for almost all complex numbers.
If we designate the measure-0 offenses as misdemeanors,
then these must be felonies. They all derive from a cavalier
treatment of multiply-branched expressions.

Fractional powers, logarithms, and inverse trigonometric
functions return only a single number on numeric calculators
and numeric computer programs. Calculators and programs
that do not support complex arithmetic might use the
real branch for a fractional power of a negative number
if the denominator if the exponent is odd. Otherwise,
it is increasingly common to use the principal branch:
—m < phase(z) < 7, 7 < F(ln z) < 7, 2™/ = (z1/7)™_ and
phase(z'/") = phase(z)/n, etc.

Based on experience with calculators and numeric pro-
grams that return a single branch, most users expect and want
the same behavior for numeric subexpressions on computer-
algebra systems. For example, users expect 32/5 to simplify
t0 2 rather than the set {2¢2"™*/* | n =0, 1,2, 3,4}. Similarly,
they expect In(1) to simplify to O rather than the infinite
set {2n7i | n € Z}. Built-in functions for solving equations
might construct the full set from the principal branch when
needed, and users are free 10 do so too if they wish.

A more compact way to represent all branches is to
leave In(1) as is and to transform 32!/5 only to 2 x 1'/5, with
both results representing all branches. There is merit to this
approach, but it requires bravely forcing a massive attitude
adjustment on users. I can imagine all the angry phone calls
and letters asking why In(1) doesn’t simplify to 0 and 1/
doesn’t simplify to 1.

Carrying the all-branch idea even further in the algebraic
case, a computer-algebra system could use an implicit
representation such as ZerosOf (z°+z+ 1) to represent a
set of algebraic number associates that aren't expressible
as radicals or nested radicals. Some systems have add-on
algebraic number packages of this nature. However, users
must take special care to prevent the mechanism from being
sabotaged by the one-branch automatic simplification of
the underlying systems. Moreover, these systems generally
require users to anticipate and specify all of the algebraic
extensions in advance as a single minimal polynomial rather
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an let the extensions automatically accumulate separately
—only as necessary. For consistency, these systems also
generally require the user to express even radicals such as
the set +v/2 in this implicit notation as Zeros0f (22— 2).
Note how I used /2 to avoid the ambiguity about whether
V2 designates all or one particular branch. No wonder
confusion abounds!

We train students to seek explicit solutions as the holy
grail, so such unnecessarily implicit results are doomed
to poor acceptance. The desire for explicit solutions is
so strong that most users prefer necessarily approximate
explicit results to necessarily implicit exact results. Thus, it
is doubtful that many users understand or appreciate these
add-on algebraic number packages.

If fractional powers, logarithms, and inverse trigono-
metric functions return one particular branch for numeric
arguments, then automatic transformations for nonnumeric
arguments should also be valid for that particular branch.
Otherwise, substitution and limits give different results when
variables become numbers in the original versus transformed
expressions.

For brevity, each felony described in this section is
merely one example of a whole class of felonies.

5.1. Fractional-Power Felonies and Sins
Most computer-algebra systems automatically distribute frac-
tional exponents over products or conversely collect such
ponents without verifying that it is valid throughout the
~declared or default domains of contained variables when
using the one particular branch used for numeric bases.
As a more specific example, many systems employ one of
the following two transformations even when both u and v
could be negative:

(1) (LI'.‘L‘)]’{Z = .ul,-’Zvl;’Z

For example,

(=)= =12 =1,
whereas

(=D'2=D12 =2 = —1.

Some systems shift guilt to the user by making these
transformations optional, with the default being to avoid the
transformations. This can be done with a control variable.
For example, a variable named TransformFractionalPow-
ers could have a default value of false, with optional
settings of collect or distribute. Another way to provide
such optional transformations is by extra transformation
functions with names such as CollectFractionalPowers
and DistributeFractionalPowers.

Either way, the default is then a sin of omission because
the safe default is to exploit such transformations when they
~re valid. Otherwise, you can end up with bulky divisors

ich as

(Izly)'/? — |z['/2y'/?

that are equivalent to 0.

Moreover, the choice between total distribution or collec-
tion of fractional exponents and no distribution or collection
is too extreme. As the default, the transformations should
be exploited where valid, and only there. For example, if
and y can be negative, then the default simplification can
validly transform

(4xy)”3
2z!/2

to (zy)'/2/z'/2, but not all the way to y'/2.

There can be an override mechanism to force transfor-
mations even when the program cannot determine validity.
If the default simplification is good, then users will rarely
be tempted to gamble by overriding the default. In Derive,
the override mechanism is to set the branch selection to
Any rather than the default value Principal. There is also
a Real choice that causes (—1)'/? to simplify to —1 rather
than to the principal branch v/3/2 +1i/2.

Experiment 9: For the systems available to you and
your colleagues, use automatic or optional simplifi-
cation to validly transform (zy|z|?)'/?/(z'/?|z]) only
to (zy)'/?/z'/2. Does each system treat sqrt(zy) the
same as (zy)'/??

Many systems also automatically employ the transfor-
mation

(2) (ul)l;’E —u

even when the phase of u could be outside the interval

(=7/2,7/2). For example, ((-1)%)"/? — 1'? — 1 % -1,

However, if the declared or default domains of variables

make expression u real, then the left side can be simplified

to u, which can further simplify to u if u is nonnegative.

Although transformation (2) is a mathematically special case

of transformation (1) in which u = v, the transformations are

usually syntax based, hence separately programmed. Thus it
is possible for a system to be guilty of one felony but not
the other.

Experiment 10: For all accessible systems, determine if
(z%)'/? simplifies to z when z is declared real. then
complex, then positive.

Another felony is the transformation

(1/1}.)”2 . lxul;':.'

even when u could be negative. For example, (1/—1)"'- —
(=1)'/2 — i, whereas 1/(=1)"/? = 1/i — —1i.
Experiment 11: For all accessible systems, see if (1/7)! > —
1/x'/2 improperly transforms to 0.
Another related felony is to employ one of the transfor-
mations
(exp z)'/? = exp(z/2)

even when z could have an imaginary part outside the

interval (==, 7). For example, exp'/?(2mz) — 1'/? — 1,

whereas exp(mi) — —1.

Experiment 12: For all accessible systems. see if you
can correctly simplify (exp(iy))'/? — exp((1y)/2) +
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(expr)'/* — exp(z/2) by cancelling only the last two
terms. with r and y declared real. Beware that different
systems use different notations for the imaginary unit
and the base of the natural logarithms. If in doubt. use
(-=1)"/? and the exp function and beware of possible
case sensitivity. Beware also of mixed notations: Does
each system treat expu — e* + ¢ — (—1)!/? the same as
et —et+1—1? )

5.2. Logarithm Felonies and Sins
Another common felony is to exploit either of the transfor-
mations

In(uv)=Inu+lnv

even when both u and v could be negative. For example,

In ((-1-1)) — In1 — 0, whereas In(—-1)+In (-1) —

i+ 7 — 27,

Some systems avoid some logarithm felonies by requiring
users first to write their own corresponding rewrite rule. This
cleverly shifts blame for a naive transformation to the user.
However, such systems are even more guilty of a sin of
omission: An experienced system implementor has a better
chance of implementing a valid rule than does a naive user,
and we have seen that such transformations are vital to good
simplification.

Experiment 13: For all accessible systems use appropriate
automatic simplification, control variables, functions,
or rewrite rules to simplify validly In (zy|z|) —In |z|-
In r only to In (ry)— In r. Beware of possible case
sensitivity and that the natural logarithm is spelled log
on some systems.

Another felony is to employ either of the transformations

In () =2In u

when u could be negative. For example, In ((—1)*) — Inl —
0. whereas 2In (-1) — 271,

Experiment 14: For all accessible systems use appropriate

automatic simplification, control variables, functions

or rewrite rules to simplify validly In (%) - 2ln z +

In (ly/*) = 2In |y| by canceling only the last two terms.

Another felony is to employ either of the transformations

In(l/uy)= Inu

when u could be negative. For example, In(1/ = 1) —
In (=1) — 7i, whereas In (—1) — —m.
Experiment 15: For all accessible systems, use approprate
automatic simplification, control variables, functions,
or rewrite rules to simplify validly In (1/z)+Inz +
In (1/ly])+In |y| by canceling only the last two terms.
Another felony is to employ the transformation

In (expz) — 2

when = could have an imaginary part outside the interval
(—m.7). For example. In exp(37i) — In (—=1) — 71 ¥ 3m.

Experiment 16: For all accessible systems use appropriate
automatic simplification, control variables, functions,
or rewrite rules to simplify validly In (exp ) In (exp(1y))
only to zln (exp(iy)), where z and y are declared real.

5.3. Trigonometric Felonies and Sins
Not many computer-algebra systems provide either auto-
matic or optional half-angle simplification. Given the usual
principal-branch implementation of square roots, valid half-
angle transformations for all real r are

sin(z/2) = sign(sin(z/2))((1 — cos 2)/2)"/?
cos(z/2) = sign(cos(z/2)N(1 +cos1)/2)"/?
tan(z/2) = sinz /(1 + cos )
cot(x/2) = (1 +cosz)/sinx

The sign factors severely restrict the applicability of the
first two identities.
Experiment 17: For all accessible systems, use appropriate
automatic simplification. control vanables. funtions,
or rewrite rules to simplify validly sin(z/2)/(1 +
tan r tan(z/2)) only to the equivalent sin(x/2)cos z.

5.4. Inverse Trigonometric Felonies and Sins

A common inverse trigonometric felony is to transform

atan(tanu) to u even when u could be outside the domain

[-7/2,7/2], and similarly for the other inverse trigono-

metric functions outside appropriate domains. For example,

atantan7 — atan0 — 0 # 7.

Experiment 18: For all accessible systems, use appropri-
ate automatic simplification, control variables, func-
tions, or rewrite rules to simplify validly atantanz +
atantansiny only to atantanr +siny for unrestricted
real r and y. Beware of possible case sensitivity and
that atan is spelled arctan on some systems.

6. Concluding Remarks

You might be alarmed at the results if you make the
recommended experiments. Good. The goal here is to
inspire caution. These systems can be extraordinarily useful
if users are aware of the underlying assumptions and of their
responsibility to verify results. The same wamings apply
to most software and hardware. For example, Kahan [9]
describes surprises that should inspire similar caution for use
of numerical calculators and programs. Manual computation
is even more dangerous now that such skill is becoming a
lost art.

There is not much that implementors can do about the
theoretical limitations described in section 2, and no one has
yet implemented a system that avoids all of the other above
limitations. Some of them will be difficult to overcome.
However, we are working on it, and some of the other
implementors probably are too—at least after they try the
above experiments. Be patient and enjoy what is already
available, but make your desires known.
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Periodic Knots and Maple

~ Charles Livingston*
Indiana University

Jim Davis and I recently completed a project in knot theory
that involved a significant amount of computing using the
mathematical program Maple. Until then, our experience
with computing had been limited to programming in Basic,
Fortran, and Pascal, and neither of us was an enthusiast for
the use of computers in pure mathematics. In this article,
1 will describe our experience with Maple and hopefully
illuminate a role that programs such as Maple have in pure
mathematics.

This article will not offer a detailed description of
the capabilities of Maple nor a comparison with similar
programs, such as Derive, Macsyma, or Mathematica. Barry
Simon’s recent article in Norices [S] is an excellent source
for such information.

Our initial work was done using Maple, version 4.2,
working both on a Macintosh Plus (with 1 megabyte
of memory) and a Macintosh IIx. Once the calculations
became more lengthy, we switched to a VAX computer.
In writing this article, I have repeated some of our work
using version 4.2.1 of Maple on a Macintosh IIx, and
version 4.3 on a VAX. It is clear that these newer versions

*Charles Livingston i1s in the Depantment of Mathematics at Indiana
oniversity, Bloomington, Indiana 47405. He can be reached by email at
livingsu@ucs.indiana.edu His article was based on research that was suppornied
by the National Science Foundation.
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offer improvements (notably in the online help) that would
have eliminated some of our difficulties and frustrations.
However, it is fair to say that the experience would have
been much the same no matter what version we had at the
time.

Periodic Knots and the Alexander Polynomial
Figure 1 illustrates two knots in R*. With a little effort, it is
not hard to show that the second knot can be deformed to
look like the first. Notice that the second diagram illustrates
a “periodic” symmetry that is hidden by the first. Formally.
a knot is called periodic, of period n, if it can be deformed
into a position in R* so that a rotation of R’ of angle 27 /n
about an axis carries the knot back to itself. Hence, the
second diagram of Figure 1 shows that the illustrated knot
has period 2.
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Figure 1

The problem of determining the periods of a knot is
difficult, and it has repeatedly served as a testing ground
for new methods of low-dimensional topology. The work
of Thurston on hyperbolic structures, that of Meeks and
Yau on minimal surfaces, and that of Jones on polynomial
invariants of knots, have all seen application to the stud)
of periodic knots; for instance, see [AHW, E, T]. In an
article in this column of Norices [A], Adams described a
computer program, Snappea, written by Weeks, that was
used in [AHW] to study periodicity of knots.

My work with Davis was based on two results of
Murasugi concerning Alexander polynomials of periodic
knots [M]. There are many definitions of the Alexander
polynomial of a knot; all that we need here is that to each
knot K there is associated an integral polynomial. Ay ().
with the property that if J can be deformed into A'. the
polynomials Ax(t) and A;(t) will be the same. modulo a
multiple of £t*; that is, Ax(t) = £t*A,(¢) for some integer
k. (The converse, that if Ax(t) and A (t) are the same
then K can be deformed into J, is false.) Tables of knots
[BZ, R] include a listing of their Alexander polynomials.
and there are now computer programs available dedicated to
computing this and other knot invariants.

Murasugi’s first result concerning the Alexander polyno-
mial of a periodic knot states that if A" is of peniod p’. with
p prime, then (modulo +t%)Ax(t) factors as

Ax(t) = ()P (A@)Y  (mod p)




