next up previous
Next: The first approximation Up: The standing wave solutions Previous: The approximate solution of

The exact solution of system (5)

The aim of this section is to find the analytical form of the function, which Fourier coefficients satisfy system (5). For arbitrary $q\in(0,1)$ let us define the following sequence:

\begin{displaymath}{\bf f}\stackrel{\rm def}{=}\{\;\forall n\in
\hbox{\normalsi...
...^{n-1/2}}{1+q^{2n-1}},{ }
{ }{ } f_{2n}^{\vphantom{+}}=0\;\}.
\end{displaymath}

The terms of the sequence ${\bf f}$ are proportional to Fourier coefficients of the Jacobi elliptic function $\bf cn$ [2]:

\begin{displaymath}\mathop{\rm cn}\nolimits(z,k)=\frac{\gamma}{k}\sum_{n=1}^\inf...
...} \mbox{ , \ \ \ }
z\in \hbox{\rm I\hskip-2pt\bf R}.
\eqno (6)
\end{displaymath}

Let us clarify introduced notations and point out some properties of the elliptic cosine:

1) Basic periods of the doubly periodic function $\mathop{\rm cn}\nolimits(z,k)$are 4K(k) and $2K(k)+2\dot\imath K'(k)$, where K(k) is a full elliptic integral, $K'(k)\equiv K(k')$ and $k'=\sqrt{1-k^{2^{\vphantom{+}}}}$.

2) The parameter q in the Fourier expansion can be expressed in terms of elliptic integrals: $q\equiv e^{-{\displaystyle\pi}\frac{K'}{K^{\vphantom{+}}}}$.

3) The Fourier-series expansion of the function $\mathop{\rm cn}\nolimits(z,k)$ does not include even harmonics. This expansion is valid in the following domain of the complex plane: $-K'<\Im m\: z<K'$, in particular, for $z\in \hbox{\rm I\hskip-2pt\bf R}$.

4) If $z\in \hbox{\rm I\hskip-2pt\bf R}$ and $k\in(0,1)$, then $\mathop{\rm cn}\nolimits(z,k)\in \hbox{\rm I\hskip-2pt\bf R}$.

5) The function $\mathop{\rm cn}\nolimits(z,k)$ is a solution of the following differential equation:

\begin{displaymath}\frac{d^2\mathop{\rm cn}\nolimits(z,k)}{dz^2}=(2k^2-1)\mathop...
...nolimits(z,k)-2k^2\mathop{\rm cn}\nolimits^3(z,k).
\eqno (7)
\end{displaymath}

The latest property means that the infinite sequence of the Fourier coefficients for $\mathop{\rm cn}\nolimits(z,k)$ is a solution of some infinite system of nonlinear algebraic equations. Let us find this system.

On the one hand, it is clear from (6) that the Fourier-series expansion for the function $\mathop{\rm cn}\nolimits^3(z,k)$ is:

\begin{displaymath}\mathop{\rm cn}\nolimits^3(z,k)=\frac{\gamma^3}{4k^3}\sum_{j=...
...ht)\mbox{, \ \ where } j=1,3,5,\dots,+\infty
\mbox{\ ; \ \ \ }
\end{displaymath}


\begin{displaymath}\begin{array}{rl}
\displaystyle
F_{j}^{(3)}({\bf f})\!&\displ...
...tom{+}}f_{p}^{\vphantom{+}}f_{j-s-p}^{\vphantom{+}}
\end{array}\end{displaymath}

(in all sums we summarize over only odd numbers).

On the other hand, from the differential equation (7) it follows that $F_j^{(3)}({\bf f})$ is proportional to $f_j^{\vphantom{+}}$, with coefficients of proportionality depending on j:

\begin{displaymath}\forall j \mbox{ \ \
: \ \ } F_j^{(3)}({\bf
f})=\left(\frac{2...
...)}{\gamma^2}+\frac{j^2}{8}\right)
f_j^{\vphantom{+}}. \eqno(8)
\end{displaymath}

Thus, the sequence ${\bf f}$ is a nonzero solution of system (8) at all $q\in(0,1)$. The following lemma proves the existence of a preferred value of q.



$\!\!\!\!\!$
Lemma. There exists such value of parameter $q\in(0,1)$ that the sequence ${\bf f}$ is a real solution of system (5), in addition a value of $\omega_1^{\vphantom{+}}$ also is real.
Proof. Inserting the sequence ${\bf f}$ into system (5) : $a_j^{\vphantom{+}}=f_j^{\vphantom{+}}$ and using system (8), we obtain:

\begin{displaymath}\begin{array}{r@{\displaystyle \;=\;}l}
\displaystyle \mbox{ ...
...}{8}-32
\omega_1^{\vphantom{+}}\right)\right\}=0.
\end{array} \end{displaymath}

System (5) has a nonzero solution if and only if

\begin{displaymath}\left\{ \begin{array}{r@{\; =\;}l}
\displaystyle\omega_1^{\v...
...displaystyle\frac{(1-2k^2)}{3\gamma^2}. \\
\end{array}\right.
\end{displaymath}

We have obtained the value of $\omega_1^{\vphantom{+}}$. The second equation of this system is equivalent to the following equation in parameter q:

\begin{displaymath}3\sum_{n=1}^\infty\left(\vphantom{\sum_{n=1}^\infty}
\frac{q^...
...n=1}^\infty
\frac{q^{n-1/2}}{1+q^{2n-1}}\right)^2=0. \eqno (9)
\end{displaymath}

This equation has the following solution on interval (0,1):

\begin{displaymath}q=1.42142623201\times10^{-2}\pm1\times10^{-13}. \end{displaymath}

Thus the lemma is proved.

Now it is easy to construct the required zero approximation for the function $\varphi(x,\tilde t)$:

\begin{displaymath}\varphi_0^{\vphantom{+}}(x,\tilde t)= A\Bigl\{\mathop{\rm cn}...
...
t),k)-\mathop{\rm cn}\nolimits(\alpha (x+\tilde t),k)\Bigr\}.
\end{displaymath}

For arbitrary $k\in(0,1)$ this function is a real solution of equation (4). If $\alpha=\frac{2K}{\displaystyle\pi}$, then the periods of $\varphi_0^{\vphantom{+}}(x,\tilde t)$ in x and in $\tilde t$ are equal to $2\pi$. Using the Fourier-series expansion for the function $\mathop{\rm cn}\nolimits(z,k)$ (formula (6)), we obtain the following expansion for function $\varphi_0^{\vphantom{+}}(x,\tilde t)$:

\begin{displaymath}\varphi_0^{\vphantom{+}}(x,\tilde
t)=2A\frac{\gamma}{k}\sum_{...
...fty}f_{2n-1}^{\vphantom{+}}
\sin((2n-1)x)\sin((2n-1)\tilde t).
\end{displaymath}

If $q=1.42142623201\times10^{-2}\pm1\times10^{-13}$, then q is a solution of equation (9) and the sequence ${\bf f}$ is a real solution of system (5). The middle value of q corresponds to k=0.451075598811, $\gamma=3.78191440007$ and $\alpha=1.0576653982$. All equation in system (5) are homogeneous ones, hence, for these values of parameters, the sequence of the Fourier coefficients of the function $\varphi_0^{\vphantom{+}}(x,\tilde t)$ also is a solution of system (5), with

\begin{displaymath}\omega_1^{\vphantom{+}}=\frac{\gamma^2}{64k^2}A^2=1.0983600974A^2.
\end{displaymath}

Thus we have proved that the function

\begin{displaymath}\varphi_0^{\vphantom{+}}(x,\tilde t)=
A\Bigl\{\mathop{\rm cn...
... t),k)-\mathop{\rm cn}\nolimits(\alpha (x+\tilde t),k)\Bigr\},
\end{displaymath}

with k=0.451075598811 and $\alpha=1.0576653982$is such a standing wave solution of equation (3) that equation (4) has a periodic solution.


next up previous
Next: The first approximation Up: The standing wave solutions Previous: The approximate solution of
IMACS ACA'98 Electronic Proceedings