next up previous
Next: The second approximation Up: The standing wave solutions Previous: The exact solution of

The first approximation

Now it is easy to find this periodic solution $\varphi_1^{\vphantom{+}}(x,\tilde t)$. Let us designate the Fourier coefficients of the function $\varphi_0^3(x,\tilde t)$ as Dnj:

\begin{displaymath}\varphi_0^3(x,\tilde t)\equiv\sum_{n=1}^{\infty}
\:\sum_{j=1}^{\infty}D_{nj}\sin(nx) \sin(j\tilde
t).
\end{displaymath}

Equation (4) gives the following result( $b_{nn}^{\vphantom{+}}$are arbitrary numbers):

\begin{displaymath}\varphi_1^{\vphantom{+}}(x,\tilde t)=\sum_{n=1}^\infty
\:\su...
...um_{n=1}^{\infty}b_{nn}^{\vphantom{+}}\sin(nx)\sin(n\tilde t).
\end{displaymath}

It should be noted that the function $\varphi_1^{\vphantom{+}}(x,\tilde t)$ with arbitrary diagonal coefficients $b_{nn}^{\vphantom{+}}$ is a solution of equation (4) and that all off-diagonal coefficients of $\varphi_1^{\vphantom{+}}(x,\tilde t)$ are proportional to A3.



IMACS ACA'98 Electronic Proceedings