next up previous
Next: Conclusions Up: The standing wave solutions Previous: The first approximation

The second approximation

Let us consider the equation to second order in $\varepsilon$:

\begin{displaymath}\frac{\partial^2\varphi_2^{\vphantom{+}}(x,\tilde
t)}{\parti...
...^{\vphantom{+}}(x,\tilde t)
\varphi_0^2(x,\tilde t). \eqno(10)
\end{displaymath}

If all diagonal coefficients of $\varphi_1^{\vphantom{+}}(x,\tilde t)$ are zeros: $\forall n$ : $b_{nn}^{\vphantom{+}}=0$, then $\forall j,n$ : $b_{jn}^{\vphantom{+}}=-b_{nj}^{\vphantom{+}}$, and the function $\varphi_1^{\vphantom{+}}(x,\tilde t)\varphi_0^2(x,\tilde
t)$ has no diagonal harmonics. Hence, selecting $\omega_2^{\vphantom{+}}=-\frac{1}{2}\omega_1^2$ , we obtain a periodic solution to equation (10):

\begin{displaymath}\varphi_2^{\vphantom{+}}(x,\tilde t)\equiv\sum_{n=1}^\infty
...
...}^{\vphantom{+}}\sin(nx)\sin(n\tilde t)
\mbox{, \ \ \ where }
\end{displaymath}


\begin{displaymath}H(x,\tilde t)\equiv
2\omega_1^{\vphantom{+}}\frac{\partial^2 ...
...1}^\infty\:\sum_{j=1}^\infty H_{nj}
\sin(nx)\sin(j\tilde t).
\end{displaymath}

It should be noted that all diagonal coefficients $h_{nn}^{\vphantom{+}}$are arbitrary numbers.



IMACS ACA'98 Electronic Proceedings