Return to Dr. J. Lorenz's home page
Publications of Dr. Jens Lorenz
-
Guba, O., Lorenz, J.:
Continuous Spectra and Numerical Eigenvalues.
,
Math. Comp. Modelling
,
54 , (2011), pp. 2616-2622.
-
Qiu, Y., Lorenz, J.:
A nonlinear Black--Scholes equation.
International Journal of Business Performance and Supply Chain Modelling
,
1 , No. 1, (2009), pp. 33-40.
-
Beyn, W.--J., Lorenz, J.:
Nonlinear stability of rotating patterns.
Dynamics of Partial Differential Equations,
5 , No. 4, (2008), pp. 349-400.
-
Edoh, K.D., Lorenz, J.:
Modelling by a planar map:
Lyapunov-type numbers in the presence of spiral points.
Math. Comp. Modelling,
48, (2008), pp. 1068-1080.
-
Kreiss, G., Kreiss, H.-O., and Lorenz, J.:
Stability of viscous shocks on finite intervals.
Archive for Rat. Mechanics and Analysis,
187, (2008), pp. 157-183.
-
Edoh, K.D., Lorenz, J.:
Lyapunov-type numbers for Poincaré maps.
Boletim da Sociedade Paranaense de
Matemática (BSPM),
24, (2006), pp. 89-98.
-
Lorenz, J.: Review of the book
Numerical Solution of Partial Differential Equations
by K.W. Morton and D.F. Mayers.
In: SIAM Review 48, No. 4 (2006), pp. 807-808.
-
Nadiga, B., Taylor, M., and Lorenz, J.:
Ocean modelling for climate studies: Eliminating short
time-scales in long-term, high-resolution studies
of ocean circulation.
Math. Comp. Modelling,
44, (2006), pp. 870-886.
-
Beyn, W.-J., Lorenz, J.:
Stability of viscous profiles:
Proofs via dichotomies.
Journal of Dynamics and Differential Equations 18, No. 1,
pp. 141-195, 2006.
-
Kreiss, G., Kreiss, H.-O., and Lorenz, J.:
Stability of viscous shocks on finite intervals.
In: Proceedings of the
Tenth International Conference on
Hyperbolic Problems: Theory, Numerics and Applications.
Asakura, editor. Yokohama Publishers Inc. (2006).
-
Goodrich, J., Hagstrom, T., and Lorenz, J.:
Hermite methods for hyperbolic initial-boundary-value problems.
Math. Comp. 75, (2006), pp. 595-630.
-
Lorenz, J.: Review of the book
Difference Schemes with Operator Factors
by A.A. Samarskii, P.P. Matus, and P.N.
Vabishchevich. In:
SIAM Review 46, No. 4 (2004), pp. 752-753.
-
Kreiss, H.-O., Lorenz, J.:
A priori estimates in terms of the maximum norm for
the solutions of the Navier-Stokes equations.
J. Diff. Equations,
Vol. 203 (2004), pp. 216-231.
-
Kreiss, H.-O., Lorenz, J.: Initial-boundary value problems
and the Navier-Stokes equations.
Classics in Applied Mathematics 47, SIAM, 2004.
-
Edoh, K.D., Lorenz, J.:
Numerical approximation of rough invariant curves of planar maps.
SIAM J. on Scientific Computing,
Vol. 25, No. 1 (2003), pp. 213-223.
-
Kreiss, H.-O., Hagstrom, T., Lorenz, J., and Zingano, P.:
Decay in time of
incompressible flows.
J. math. fluid mech. 5 (2003), pp. 231-244.
-
Hagstrom, T., Lorenz, J.:
On the stability of approximate solutions of hyperbolic-parabolic
systems and the all-time existence of smooth, slightly compressible flows.
Indiana University Math. J.
51 No. 6 (2002), pp. 1339-1387.
-
Edoh, K.D., Lorenz, J.:
A new algorithm for the computation of
invariant curves using arc-length parametrization.
In:
Proceedings, International Conference on
Computing and Information Technologies,
World Scientific, 2001.
-
Edoh, K.D., Lorenz, J.:
Computation of Lypunov-type numbers for invariant
curves of planar maps.
SIAM J. Scientific Computing,
23 No. 4 (2001), pp. 1113-1134.
-
Drumm, C.R., Fan, W.C.,
Lorence, L., Powell, J.,
and Lorenz, J.:
Experience with unstructured-mesh electron transport code
CEPTRE.
In: Proceedings American Nuclear Society, Annual Meeting,
2000.
-
Drumm, C.R., Fan, W.C., and Lorenz, J.:
Even/Odd parity transport with internal voids.
In: Proceedings American Nuclear Society, Annual Meeting,
2000.
-
Kreiss, H.-O., Lorenz, J.:
Resolvent Estimates and Quantification of Nonlinear Stability.
Acta Mathematica Sinica,
English Series, Vol. 16, No. 1 (2000), pp. 1-20.
-
Lorenz, J., Jackett, S., and Wangguo Qin:
Self-organized criticality: Analysis and simulation
of a 1D sandpile.
In: Numerical Methods for Bifurcation Problems
and Large-Scale Dynamical Systems,
IMA Volumes in Mathematics and its Applications, Vol. 119.
E. Doedel and L.S. Tuckerman (eds.),
Springer Verlag, New York, 2000.
-
Dynamics of Algorithms,
The IMA Volumes in Math. and Its Applications,
Vol. 118,
L. Petzold, R. de la Llave, J. Lorenz (eds.),
Springer-Verlag, 2000.
-
Drumm, C.R., Lorenz, J.:
FE solutions of the even/odd parity form of
the linear Boltzmann equation.
Mathematical and Computer Modelling
11, No. 2-3 (2000), 55-71.
-
Drumm, C.R., Lorenz, J.:
Parallel FE Electron-Photon Transport Analysis
on a 2-D Unstructured Mesh.
In:
Mathematics and Computation,
Reactor Physics and Environmental Analysis
in Nuclear Applications,
J.M. Aragonés (ed.), Senda Editorial, Spain,
1999.
-
Lorenz, J., Schroll, J.:
Hyperbolic systems with relaxation:
Characterization of stiff well-posedness
and asymptotic expansion.
J. Mathematical Analysis and Applications
235 (1999), 497-532.
-
Beyn, W.-J., Lorenz, J.:
Stability of traveling waves: Dichotomies and
eigenvalue conditions on finite intervals.
Numer. Funct. Anal. and Optimiz
20, No. 3 & 4 (1999), 201-244.
-
Lorenz, J., Schroll, J.:
Hyperbolic systems with relaxation:
Symmetrizers and entropies.
In: Hyperbolic Problems: Theory, Numerics, Applications.
Fey, Jeltsch (eds.), pp. 823-832.
ISNM Vol. 130, Birkhäuser, Basel, 1999.
-
Kreiss, G., Kreiss, H.-O., and Lorenz, J.:
On stability of conservation laws.
SIAM J. Math. Analysis
30, No. 2 (1999), 401-430.
-
Qin, W., Lorenz, J.:
Self-Organized Criticality: Simulation Of
A 1-D Sandpile Model.
In: MHPCC Applications Briefs, 1998.
http://www.mhpcc.edu/research/ab98/98ab18.html
-
Hagstrom, T., Lorenz, J.: All-time existence of classical solutions
for slightly compressible flows.
SIAM J. Math. Analysis 29, No. 3 (1998), 652-672.
- Lorenz, J., Schroll, J.:
Well-posedness of stiff hyperbolic systems.
In: M. Feistauer, K. Kizel, and R. Rannacher (eds.),
Matfyzpress, Prague.
Numerical Modelling
in Continuum Mechanics,
Proceedings of the 3rd Summer Conference, Prague,
pp. 384-391, 1998.
-
Kreiss, H.-O., Lorenz, J.:
Stability for time dependent differential equations.
Acta Numerica 8 (1998), 203-285.
-
Lorenz, J., Schroll, J.:
Stiff well-posedness and asymptotic expansion for
hyperbolic systems with relaxation.
Mittag-Leffler Report, 1997.
-
Lorenz, J., Schroll, J.:
Stiff well-posedness for hyperbolic systems with large relaxation terms
(linear constant-coefficient problems).
Adv. Differential Equations
2 (1997), no. 4, 643-666.
-
Dieci, L., Lorenz, J.:
Lyapunov-type numbers and torus
breakdown: Numerical aspects and a case study.
Numer. Algorithms 14 (1997), no.1-3, 79-102.
-
Baumert, A., Lorenz, J., and Hagstrom, T.: Boundary conditions at artificial
boundaries for singular perturbations. IGPM-Report Nr. 118, RWTH-Aachen, Germany, 1995.
-
Dieci, L., Lorenz, J.: Computation of invariant tori by the method of
characteristics. SIAM J. Numer. Anal. Vol. 32, No. 5, 1436-1474 (1995).
- Hagstrom, T., Lorenz, J.: All-time existence of
smooth solutions
to PDEs
of mixed type and the invariant subspace of uniform states.
Advances in Applied Mathematics 16, 219-257 (1995).
-
Lorenz, J., editor,
Mathl. Comput. Modelling, Vol. 20, No. 10/11 (1994).
Special Issue on
Theory and Numerical Methods for
Initial-Boundary Value Problems.
-
Lorenz, J.: Numerics of attractors and invariant manifolds.
In: Chaotic Numerics
(P. Kloeden, K. Palmer, eds.), AMS Series on Contemporary Mathematics 172 (1994),
pp. 185-202.
- Hagstrom, T., Lorenz, J.:
Boundary conditions and the simulation of low Mach number flows.
In: Environmental Acoustics, International Conference on
Theoretical and Computational Acoustics, Vol. 2. D. Lee, M. H. Schultz (eds.),
World Scientific, Singapore, 1994.
- Kreiss, H.-O., Lorenz, J.: On the existence of slow manifolds
for problems with different time scales.
Phil. Trans. R. Soc. Lond. A, 346, 159-171 (1994).
-
Kloeden, P. E., Lorenz, J.: Lyapunov functions and the approximation of
attractors.
In: Nonlinear Dynamics: Attractor Approximation and Global Behaviour, pp. 93-98.
N. Koksch, V. Reitmann, T. Riedrich (Editors), Technische Universität Dresden, 1993.
- Hagstrom, T., Lorenz, J.: Boundary conditions for models of slightly
compressible flow. In: Applications of Advanced Computational Methods
for Boundary and Interior Layers. J.J.H. Miller (editor),
Boole Press, Dublin (1993).
- Kreiss, H.-O., Lorenz, J.: Manifolds of slow solutions for
highly oscillatory problems.
Indiana University Math. J. 42, 1169-1191 (1993).
- Lorenz, J.:
Computation of invariant manifolds. In:
Numerical Analysis 1991, pp. 118-127.
D. F. Griffiths, G. A. Watson (editors), Longman Scientific & Technical,
Harlow, Essex, UK, 1992.
-
Morlet, A. C., Lorenz, J.:
Numerical solution of a functional equation on a circle.
SIAM J. Numer. Anal. 29, 1741-1768 (1992).
-
Dieci, L., Lorenz, J.:
Block M-matrices and computation of invariant tori.
SIAM J. Sci. Stat. Comput. 13, 885-903 (1992).
- Van de Velde, E., Lorenz, J.: Adaptive data distribution for
concurrent continuation.
Numer. Math. 62, 269-294 (1992).
- Van de Velde, E., Lorenz, J.: Applications of
adaptive data distributions.
In: The Proceedings of the Fifth Distributed Memory Computing Conference, pp. 249-253.
IEEE Computer Society, Los Alamitos (1991).
-
Dieci, L., Lorenz, J., Russell, R.:
Numerical calculation of invariant tori.
SIAM J. Sci. Stat. Comput. 12, 607-647 (1991).
- Kreiss, H.-O., Lorenz, J., Naughton, M.:
Convergence of the solutions of the compressible to the solutions of the
incompressible Navier-Stokes equations. Advances in Applied
Mathematics 12, 187-214 (1991).
- Kloeden, P.E., Lorenz, J.: A note on multistep methods and
attracting sets of dynamical systems. Numer. Math. 56, 667-673 (1990).
- Lorenz, J., Van de Velde, E.: Concurrent computations of invariant
manifolds. In: The Proceedings of the Fourth Conference on
Hypercubes, Concurrent Computers, and Applications, pp. 1315-1320.
Golden Gate Enterprises, Los Altos (1990).
- Kreiss, H.-O., Lorenz, J.: Initial-boundary value problems
and the Navier-Stokes equations. Vol. 136, Pure and Applied Mathematics,
Academic Press, New York (1989).
-
Franklin, J., Lorenz, J.: On the scaling of multidimensional
matrices.
Linear Algebra and Appl. 114/115, 717-735 (1989).
- Kloeden, P.E., Lorenz, J.: Lyapunov stability and attractors
under discretization.
In: Differential Equations,
C. M. Dafermos, G. Ladas, G. Papanicolaou (eds). Marcel Dekker, New York (1989).
- Dieci, L., Lorenz, J., Russell, R.: Decoupling of dynamical
systems using boundary value techniques. Technical report,
Applied Mathematics, Simon Fraser University (1988).
-
Beyn, W.-J., Lorenz, J.: Center manifolds of dynamical systems
under discretization. Numer. Funct. Anal. and Optimiz. 9, 381-414 (1987).
-
Brown, D.L., Lorenz, J.: A high-order method for stiff boundary-value
problems with turning points. SIAM J. Sci. Stat. Comput. 8, 790-805 (1987).
-
Lorenz, J., Sanders, R.: On the rate of convergence of viscosity
solutions for boundary value problems. SIAM J. Math. Anal. 18, 306-320 (1987).
-
Kloeden, P.E., Lorenz, J.: Stable attracting sets in
dynamical systems and in their one step discretizations. SIAM J. Numer.
Anal. 23, 986-995 (1986).
-
Lorenz, J.: Convergence of upwind schemes for a
stationary shock. Math. Comp. 46, 45-57 (1986).
-
Lorenz, J., Sanders, R.: Second order nonlinear
singular perturbation problems with boundary conditions of mixed
type. SIAM J. Math. Anal. 17, 580-594 (1986).
-
Lorenz, J.: Analysis of difference schemes for a
stationary shock. SIAM J. Numer. Anal. 21, 1038-1053 (1984).
- Lorenz, J.: Study of a numerical method of a shock
problem. ZAMM 64, T298-T299 (1984).
-
Lorenz, J.: Numerical solution of a singular
perturbation problem with turning points. In: Equadiff 82, H.W.
Knobloch, K. Schmitt (eds.), Lecture Notes in Math. 1017,
Springer (1983).
- Lorenz, J.: Stability and monotonicity properties of
stiff quasi-linear boundary problems. Review of Research,
Faculty of Science, Math. Series 12, University Novi Sad, 151-175
(1982).
- Lorenz, J.: Iterative solution of nonlinear difference
equations for shock problems. In: Introduction to Computational
and Asymptotic Methods for Boundary and Interior Layers. Miller
(ed.), Boole Press Limited, Dublin (1982).
- Lorenz, J.: Discretization of conservation laws and
numerical dissipation. In: Introduction to Computational and
Asymptotic Methods for Boundary and Interior Layers. Miller
(ed.), Boole Press Limited, Dublin (1982).
- Lorenz, J.: An elementary introduction to and
analytical properties of some shock problems. In: Introduction to
Computational and Asymptotic Methods for Boundary and Interior
Layers. Miller (ed.), Boole Press Limited, Dublin (1982).
-
Lorenz, J.: Nonlinear boundary value problems with
turning points and properties of difference schemes. In: de
Jager, Eckhaus (eds.), Theory and Applications of Singular
Perturbations, 150-169. Lecture Notes in Math. 942, Springer
(1982).
- Beyn, W.-J., Lorenz, J.: Spurious solutions for
discrete superlinear boundary value problems. Computing 28, 43-51
(1982).
- Lorenz, J.: Nonlinear singular perturbation problems
and the Engquist-Osher difference scheme. Mathematisch Institut,
Katholieke Universiteit Nijmegen, Report 8115 (1981).
-
Lorenz, J.: Resonance in equations with a diagonal
field. Linear Algebra and Appl. 38, 103-107 (1981).
- Lorenz, J.: Exponentially fitted difference schemes
for singular perturbation problems. ZAMM 61, T293-T294 (1981).
-
Lorenz, J.: Stability and consistency analysis of
difference methods for singular perturbation problems. In:
Axelsson, Frank, van der Sluis (eds.), Analytical and Numerical
Approaches to Asymptotic Problems in Analysis, 141-156.
North-Holland, Amsterdam (1981).
- Lorenz, J.: Zur Theorie und Numerik von
Differenzenverfahren für singuläre Störungen.
Habilitationsschrift, Universität Konstanz (1980).
- Bohl, E., Lorenz, J.: Inverse monotonicity and
difference schemes of higher order. A summary for two-point
boundary value problems. Aequ. Math. 19, 1-36 (1979).
-
Lorenz, J., Mackens, W.: Toeplitz matrices with
totally nonnegative inverses. Linear Algebra and Appl. 24, 133-141 (1979).
- Lorenz, J.: Zur numerischen Lösung steifer
Randwertaufgaben.
ZAMM 59 (1979), pp. T65-T66.
- Lorenz, J.: Combinations of initial and boundary value
methods for a class of singular perturbation problems. In:
Hemker, Miller (eds.), Numerical Analysis of Singular Perturbation
Problems, 295-315.
Academic Press, London, New York, San Francisco (1979).
- Griffiths, D.F., Lorenz, J.: An analysis of the
Petrov-Galerkin finite element method.
Comput. Methods Appl. Mech. Engrg.
14 (1978), pp. 39-64.
- Lorenz, J.: Die Konvergenzordnung bei
Diskretisierungen mit Formeln höherer Genauigkeit.
ZAMM 57 (1977),
pp. T288-T289.
- Lorenz, J.: Zur Inversmonotonie diskreter Probleme.
Numer. Math. 27 (1977), pp. 227-238.
- Beyn, W.-J., Lorenz, J.: On convergence of finite
element methods for non-coercive problems. Department of Math.
and Statistics, Calgary, Research paper 330 (1976).
- Lorenz, J.: Die Inversmonotonie von Matrizen und ihre
Anwendung beim Stabilitätsnachweis von Differenzenverfahren.
Dissertation, Universität Münster (1975).
- Bohl, E., Beyn, W.-J., Lorenz, J.: Zur Anwendung der
Theorie über den Spektralradius linearer, streng-monotoner
Operatoren. ISNM 24, Birkhäuserverlag, Basel, Stuttgart, 23-31
(1974).
lorenz@math.unm.edu
Last updated: July 2008
|