Professor James Ellison - DOE Grant Works, Updated January 29, 2020
Return to Home Page
    Grant works [GW1-GW34] were produced with James Ellison as PI.
    Grant works [GW35-GW46] were produced with Klaus Hienemann as PI.


  1. R. Warnock and J.A. Ellison, A General Method for Propagation of the Phase Space Distribution, with Application to the Saw-Tooth Instability, Proceedings of 2nd ICFA Advanced Workshop on Physics of High Brightness Beams, UCLA, Los Angeles, November 1999.
      
  2. R. L. Warnock and J.A. Ellison Equilibrium State of Colliding Electron Beams, Phys. Rev. ST Accel. Beams 6, 104401 (2003).
      
  3. H.S. Dumas, J.A. Ellison, and M. Vogt, First-Order Averaging Theorems for Maps with Applications to Accelerator Beam Dynamics, SIAM J. Applied Dynamical Systems 3, 409 (2004).
      
  4. D. Barber, J.A. Ellison, and K. Heinemann Quasiperiodic Spin-Orbit Motion and Spin Tunes in Storage Rings, Phys. Rev. ST Accel. Beams 7, 124002 (2004).
      
  5. R. Warnock, R. Ruth, M. Venturini, and J.A. Ellison, Impedance Description of Coherent Synchrotron Radiation with Account of Bunch Deformation, Phys. Rev. ST Accel. Beams 8, 014402 (2005).
      
  6. M. Venturini, R. Warnock, R. Ruth, and J.A. Ellison, Coherent Synchrotron Radiation and Bunch Stability in a Compact Storage Ring, Phys. Rev. ST Accel. Beams 8,014202 (2005).
      
  7. G. Bassi, T. Agoh, M. Dohlus, L. Giannessi, R. Hajima, A. Kabel, T. Limberg, and M. Quattromini, Overview of CSR Codes, Nucl. Instr. Meth. Phys. Res. A 608, (2006).
      
  8. EPAC06 Papers:

    1. G. Bassi, J.A. Ellison, and K. Heinemann, Self Field of Sheet Bunch: A Search for Improved Methods, Proceedings of EPAC06, Edinburgh, Scotland, June 2006.

    2. G. Bassi, J.A. Ellison, and K. Heinemann, CSR Effects in a Bunch Compressor: Influence of the Transverse Force and Shielding, Proceedings of EPAC06, Edinburgh, Scotland, June 2006.

    3. K. Heinemann, G. Bassi, and J.A. Ellison, Comparison of Three Radiation Powers for Particle Bunches and Line Charges, Proceedings of EPAC06, Edinburgh, Scotland, June 2006.
      
  9. A.V. Sobol, A Vlasov Treatment of the 2DF Collective Beam-Beam Interaction: Analytical and Numerical Results, PhD Dissertation with distinction, Department of Mathematics and Statistics, University of New Mexico, July 2006.
      
  10. J.A. Ellison, A.V. Sobol, and M. Vogt, A New Model for the Collective Beam-Beam Interaction, New Journal of Physics, 9, 32 (2007).
      
  11. J.A. Ellison, K. Heinemann, Polarization Fields and Phase Space Densities in Storage Rings: Stroboscopic Averaging and the Ergodic Theorem , Physica D 234, 131 (2007).
      
  12. G. Bassi, J.A. Ellison, and K. Heinemann, Equilibrium Fluctuations in an N-Particle Coasting Beam: Schottky Noise Effects, Proceedings of PAC07, Albuquerque, New Mexico, June 2007.
      
  13. G. Bassi, J.A. Ellison, K. Heinemann, and R. Warnock, Self Consistent Monte Carlo Method to Study CSR Effects in Bunch Compressors, THPAN084 in Proceedings of PAC07, Albuquerque, New Mexico, June 2007.
      
  14. J.A. Ellison, G. Bassi, K. Heinemann, M. Venturini, R. Warnock, Self Consistent Computation of Electromagnetic Fields and Phase Space Densities for Particles on Curved Planar Orbits, TUZBC03 of PAC07 proceedings. Invided talk and paper, Albuquerque, New Mexico, June 2007.
      
  15. EPAC08 Papers:

    1. G. Bassi, J.A. Ellison, and K. Heinemann, A Vlasov-Maxwell Solver to Study Microbunching Instability in the Fermi@Elettra First Bunch Compressor System, Proceedings of EPAC08, Genoa, Italy, June 2008.

    2. R. Warnock, J.A. Ellison, K. Heinemann, and G.Q. Zhang, Meshless Solution of the Vlasov Equation Using a Low-discrepancy Sequence, Proceedings of EPAC08, Genoa, Italy, June 2008.
      
  16. S. Di Mitri, et.al., Design and Simulation Challenges for FERMI@Elettra, Nucl. Instr. Meth. Phys. Res. A 608, (2009).
      
  17. ICAP2009 Papers:

    1. G. Bassi, J.A. Ellison, and K. Heinemann, Self Field of a Sheet Bunch: A Search for Improved Methods, Proceedings of ICAP09, San Francisco, September 2009.

    2. R. Warnock, Y. Cai, and J.A. Ellison, Construction of Large-Period Symplectic Maps By Interpolative Methods, Proceedings of ICAP09, San Francisco, September 2009.
      
  18. G. Bassi, J.A. Ellison, K. Heinemann, and R. Warnock, Microbunching Instability in a Chicane: Two-Dimensional Mean Field Treatment, Phys. Rev. ST Accel. Beams 12, 080704 (2009).
      
  19. G. Bassi, J.A. Ellison, K. Heinemann, and R. Warnock, Transformation of Phase Space Densities Under the Coordinate Changes of Accelerator Physics, Phys. Rev. ST Accel. Beams 13, 104403 (2010).
      
  20. Presentations at Microbunching Workshops:

    1. G. Bassi, Self-Consistent Monte-Carlo Method to Study CSR Effects from Arbitrary Planar Orbits, Sincrotrone Trieste, September 2007.

    2. G. Bassi, J.A. Ellison, and K. Heinemann, A Vlasov-Maxwell Solver to Study Microbunching Instability in the Fermi@Elettra First Bunch Compressor System, LBNL, October 2008.

    3. R. Warnock and J.A. Ellison, Unrecognized Singularity in the Field of a One-Dimensional Evolving Bunch, LBNL, October 2008.

    4. G. Bassi, Modelling the Microbunching Instability for Bunch Compressor Systems, INFN-LNF, Frascati, March 2010.
      
  21. K. Heinemann, Two Topics in Particle Accelerator Beams: Vlasov-Maxwell Treatment of Coherent Synchrotron Radiation and Topological Treatment of Spin Polarization, PhD Dissertation with distinction, Department of Mathematics and Statistics, University of New Mexico, May 2010.
      
  22. K. Heinemann, D.A. Bizzozero, J.A. Ellison, S.R. Lau, and G. Bassi, Rapid Integration Over history in Self-Consistent 2D CSR Modeling, Proceedings of ICAP2012, Rostock-Warnemunde, Germany, August 2012.
      
  23. J.A. Ellison, H. Mais, and G. Ripken, Orbital Eigen-Analysis for Electron Storage Rings in "Handbook of Accelerator Physics and Engineering", second edition, edited by A.W. Chao, K.H. Mess, M. Tigner, and F. Zimmermann, 2013.
      
  24. G. Bassi, J.A. Ellison, and K. Heinemann, Comparison of 1D and 2D CSR Models with Application to the Fermi@Elettra First Bunch Compressor System, Proceedings of PAC2011, New York, March 2011.
      
  25. D.A. Bizzozero, J.A. Ellison, K. Heinemann, and S.R Lau, Paraxial Approximation in CSR Modeling Using the Discontinuous Galerkin Method, Proceedings of FEL13, New York, August 2013. Poster.
      
  26. K. Heinemann, J.A. Ellison and M. Vogt, Quasiperiodic Method of Averaging Applied to Planar Undulator Motion Excited by a Fixed Traveling Wave, Proceedings of FEL13, New York, NY, USA, MOPSO31. Poster.
      
  27. J.A. Ellison, K. Heinemann, M. Vogt and M. Gooden, Planar Undulator Motion Excited by a Fixed Traveling Wave: Quasiperiodic Averaging, Normal Forms and the FEL Pendulum, Phys. Rev. ST Accel. Beams 16, 090702 September 2013. An earlier version is on the archive at arXiv:1303.5797 (2013) and published as DESY report 13-061.
      
  28. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, New and Unifying Formalism for Study of Particle-Spin Dynamics Using Tools Distilled From Theory of Bundles, Proceedings of IPAC14, Dresden, Germany, THPRO061.
      
  29. D.A. Bizzozero, R. Warnock, and J.A. Ellison, Modeling CSR in a Vacuum Chamber by Partial Fourier Analysis and the Discontinuous Galerkin Method, Proceedings of FEL14, Basel, Switzerland, TUP02.
      
  30. Bundle Theory and Spin Dynamics:

    1. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, A New and Unifying Approach to Spin Dynamics and Beam Polarization in Storage Rings, on archive at arXiv:1409.4373 [physics.acc-ph] and accessible from math-ph as well. Also published as DESY report 14-163.

    2. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, A detailed and unified treatment of spin-orbit systems using tools distilled from the theory of bundles. On the archive at arXiv:1501.02747 [physics.acc-ph].

    3. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, An informal summary of a new formalism for classifying spin-orbit systems using tools distilled from the theory of bundles. Proc.21st Int. Spin Physics Symposium, Beijing, China, October 2014. On archive at arXiv:1502.00538 [physics.acc-ph].

    4. K. Heinemann, D. Barber, J.A. Ellison and M. Vogt, A new and unifying approach to spin dynamics and beam polarization in storage rings, encouraged revision resubmitted to NIMA.

    5. K. Heinemannn, D. Barber, J.A. Ellison and M. Vogt, A unified treatment of spin-orbit systems using tools distilled from the theory of bundles. Submitted to PRAB, reviewed and in revision (See [I.] above). We received a positive review with a request to split it into two parts. Part I is based on Chapters 1-7 and is nearly complete, see A detailed and unified treatment of spin-orbit systems using tools distilled from the theory of bundles:Part I. Part II is based on Chapter 8 and is in progress.

    6. M. Vogt, A Beam Dynamics View on a Generalized Formulation of Spin Dynamics, Based on Topological Algebra, with Examples, Nonlinear Dynamics and Collective Effects in Particle Beam Physics: Proceedings of the International Committee on Future Accelerators, Arcidosso, Italy, September 2019. See meeting website, paper and proceedings book.
      
  31. B.E. Billinghurst, J.C. Bergstrom, C. Baribeau, T. Batten, L. Dallin, T.E. May, J.M. Vogt, W.A. Wurtz, R. Warnock, D.A. Bizzozero, and S. Kramer Observation of Wakefields and Resonances in Coherent Synchrotron Radiation.Phys. Rev. Lett. 114, 204801, 2015.
      
  32. D. Bizzozero, Studies of coherent synchrotron radiation with the Discontinuous Galerkin Method. Ph.D. Dissertation with distinction, Math and Stat, University of New Mexico, July 2015.
      
  33. D.A. Bizzozero, J.A. Ellison, K. Heinemann, and S.R. Lau, Rapid Evaluation of Two-Dimensional Retarded Time Integrals, Journal of Computation and Applied Mathematics, 324(2017) 118-141.
      
  34. R.L. Warnock and D. A. Bizzozero, Efficient computation of coherent synchrotron radiation in a rectangular chamber, Phys. Rev. Accel. Beams 19, 090705 (2016).
      
  35. K. Heinemann, O. Beznosov, J.A. Ellison, D. Appelö, D.P. Barber A pseudospectral method for solving the Bloch equations of the polarization density in e− storage rings, Proceedings of IPAC18, Vancouver, May 2018.
      
  36. K. Heinemann, O. Beznosov, J.A. Ellison, D. Appelö, D.P. Barber, Spin Dynamics in Modern Electron Storage Rings: Computational and Theoretical Aspects, Proceedings of ICAP18, Key West, October 2018. See invited talk, program and website of ICAP18.
      
  37. O. Beznosov, K. Heinemann, J.A. Ellison, D. Appelö, D.P. Barber, Spin Dynamics in Modern Electron Storage Rings: Computational Aspects, Proceedings of ICAP18, Key West, October 2018. See talk, program and website of ICAP18.
      
  38. J.A. Ellison, K. Heinemann, S.R. Lau, Distributional analysis of radiation conditions for the 3+1 wave equation, Rocky Mountain Journal of Mathematics, 49(1), 1-27 (2019).
      
  39. FCC Design Reports and FCC Week 2019 Talk:

    1. A. Abada et al, Future Circular Collider Conceptual Design Report. Volume 2 - FCC-ee: The Lepton Collider, European Physical Journal Special Topics, 228, 261-623 (2019).

    2. A. Abada et al, Future Circular Collider Conceptual Design Report. Volume 3 - FCC-hh: The Hadron Collider, European Physical Journal Special Topics, 228, 755-1107 (2019).

    3. A. Abada et al, Future Circular Collider Conceptual Design Report. Volume 4 - HE-LHC: The High-Energy Large Hadron Collider, European Physical Journal Special Topics, 228, 1107-1382 (2019).

    4. K. Heinemann, D. Appelö, D.P. Barber O. Beznosov, J.A. Ellison, Two new approaches of estimating the Polarization in High Energy Electron Storage Rings, Talk at FCC Week, Brussels, June 2019.
      
  40. K. Heinemann, D. Appelö, D.P. Barber, O. Beznosov, J.A. Ellison, The Bloch equation for spin dynamics in electron storage rings: Computational and theoretical aspects, International Journal of Modern Physics A 34, 1942032 (2019).
      
  41. K. Heinemann, D. Appelö, D.P. Barber, O. Beznosov, J.A. Ellison, Re-evaluation of spin-orbit dynamics of polarized e+e- beams in high energy circular accelerators and storage rings: An approach based on a Bloch equation, The 2019 international workshop on the high energy Circular Electron-Positron Collider, Hong Kong, January 2019, to be published. See talk, program and website.
      
  42. O. Beznosov, From Wave Propagation to Spin Dynamics: Mathematical and Computational Aspects, PhD Dissertation with distinction, Department of Mathematics and Statistics, University of New Mexico, December 2020.
      
  43. J. Ellison, K. Heinemann, H. Mais, Orbital Eigenanalysis for Electron Storage Rings. To be published in the third edition of the Handbook of Accelerator Physics and Engineering, edited by A.W. Chao et. al. This is an extensive revision of [GW23].
      
  44. UNM researchers study polarization and spin dynamics in electron storage rings. See https://news.unm.edu/news/unm-researchers-study-polarization-and-spin-dynamics-in-electron-storage-rings. June 16, 2021.
      
  45. O. Beznosov, J.A. Ellison, K. Heinemann, D.P. Barber, J.A. Crittenden, G.H. Hoffstaetter, D. Sagan, Spin Matching and Monte-Carlo Simulation of Radiative Spin Depolarization in e+-e Storage Rings with Bmad. IPAC 2021.
      
Grant Work Drafts

  1. K. Heinemann, Lab Frame Equations of Motion Transformed to Beam Frame Coordinates.. 100 page document in progress.
      
  2. O. Beznosov, J.A. Ellison, K. Heinemann, M. Kovalenko, Details of Orbital Eigen-Analysis for Electron Storage Rings. Detailed version of [GW43], in progress. To be published on arXiv.
      
  3. H.S. Dumas, J.A. Ellison, and K. Heinemann, Averaging for Quasiperiodic Systems with Applications. Research completed, draft nearly complete. To be submitted to a SIAM Journal.
      
  4. H.S. Dumas, J.A. Ellison and G. Hoffstaetter, Elementary proof of an adiabatic invariance for spins in a circular particle accelerator. Draft in progress.
      
  5. K. Heinemann, Applying the Gram-Schmidt Galerkin method to effective reduced Bloch equations. Draft in progress.
      
Grant Work Seminars on Vlasov-Maxwell

  1. J.A. Ellison,K. Heinemann, and G. Bassi, From Microscopic Klimontovich-Maxwell to Macroscopic Vlasov-Maxwell: Relativistic N-particle electron bunches in modern particle accelerators, N large, Seminar Talk, UNM, October 20, 2014.
      
  2. J.A. Ellison, G. Bassi and K. Heinemann, Microscopic Klimontovich-Maxwell (KM) to Macroscopic Vlasov-Maxwell (VM): Kinetic theory based on the random initial value problem and coarse graining, Seminar Talk, UNM, December 5, 2016.
      
  3. J.A. Ellison, G. Bassi and K. Heinemann, Random N-Particle Klimontovich-Maxwell System: Probabilistic Analysis, Fluctuations from Mean and Ecker Hierarchy, IPAM Beam Dynamics Workshop, UCLA, January 25, 2017.
      
Grant Work Notes

  1. J.A. Ellison and K. Heinemann, Unpublished Notes on Collective 1D FEL Theory, November 2012.
      
  2. K. Heinemann, Preliminary Note on Yang-Mills, April 2013.
      
  3. K. Heinemann, G. Bassi, and J.A. Ellison, Axiomatic Treatment of Saldin's 1D Model and an Associated 4D Vlasov Equation, September 2011.
      
  4. R. Warnock, D.A. Bizzozero and J.A. Ellison, The Energy Deposited in Resistive Walls from Coherent Synchrotron Radiation, Late 2016.
      
Department of Mathematics and Statistics       University of New Mexico      SMLC 204     Albuquerque     NM     87131